
Simulink® Verification and Validation™ 2
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
Simulink® Verification and Validation™ User’s Guide
© COPYRIGHT 2004–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
June 2004 First printing New for Version 1.0 (Release 14)
October 2004 Online only Revised for Version 1.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 1.0.2 (Release 14SP2)
April 2005 Second printing Revised for Version 1.1 (Web release)
September 2005 Online only Revised for Version 1.1.1 (Release 14SP3)
March 2006 Online only Revised for Version 1.1.2 (Release 2006a)
September 2006 Online only Revised for Version 2.0 (Release 2006b)
March 2007 Online only Revised for Version 2.1 (Release 2007a)
September 2007 Online only Revised for Version 2.2 (Release 2007b)
March 2008 Online only Revised for Version 2.3 (Release 2008a)
October 2008 Online only Revised for Version 2.4 (Release 2008b)

Contents

Getting Started

1
Product Overview . 1-2

System Requirements . 1-3
Operating System Requirements . 1-3
Product Requirements . 1-3

Organization of This User’s Guide 1-4

Managing Model Requirements

2
What Is the Requirements Management Interface? . . . 2-2

Configuring the Requirements Management
Interface . 2-3

Adding and Viewing Requirement Links 2-4
Object and Document Types . 2-4
Adding Requirement Links to an Object 2-7
Viewing Requirements Documents 2-14
Resolving the Document Path . 2-17
Adding Requirement Links to Multiple Objects
Simultaneously . 2-18

Selection-Based Linking . 2-22

Linking to Custom Types of Requirements
Documents . 2-28
Why Create a Custom Link Type? . 2-28
Custom Link Type Registration . 2-29
Built-In Link Types . 2-29

v

Link Properties . 2-30
Link Type Properties . 2-30
Creating a Custom Link Requirement Type 2-32
Navigating to Simulink Models from External
Documents . 2-42

Viewing Objects with Requirement Links 2-45

Generating a Requirements Report 2-48

Displaying the System Requirements in a Diagram . . . 2-50
About the System Requirements Block 2-50
Adding the System Requirements Block 2-50
Renaming the System Requirements Block 2-53
Changing Fonts for the System Requirements Block 2-54

Including Requirements with Generated Code 2-56

Managing Model Requirements with DOORS
Software

3
What Is the Requirements Management Interface for
DOORS Software? . 3-2

Configuring the Requirements Management Interface
for DOORS Software . 3-3
Before You Begin . 3-3
Installing DOORS Software Before RMI 3-3
Installing DOORS Software After RMI 3-3
Upgrading DOORS Software . 3-4
Manual Installation for DOORS Software 3-4

Starting the Requirements Management Interface for
DOORS Software . 3-6

Linking Objects to DOORS Requirements 3-9

vi Contents

About Linkages Between a Simulink Model and DOORS
Software . 3-9

Creating a DOORS Requirement Object 3-9
Linking a Simulink or Stateflow Object to a DOORS
Requirement . 3-11

Synchronizing a DOORS Module with the Simulink
Model . 3-14
About Module Synchronization . 3-14
Synchronizing a Model with the DOORS Software 3-16
Customizing the Level of Synchronization Detail 3-17
Customizing the DOORS Synchronization Settings 3-22
Linking Requirements to the DOORS Synchronized
Module . 3-24

Navigating Between Model Objects and DOORS
Requirements . 3-26
Viewing Model Elements with Requirements 3-26
Navigating from a Simulink Model to DOORS
Requirements . 3-28

Navigating from a DOORS Requirements to the Simulink
Model . 3-30

Managing Model Verification Blocks

4
Using Model Verification Blocks . 4-2

Using the Verification Manager . 4-7
What Is the Verification Manager? 4-7
Opening the Verification Manager . 4-7
Enabling and Disabling Model Verification Blocks with the
Verification Manager . 4-15

Using Enabling and Disabling Tools in the Verification
Manager . 4-20

Managing Verification Requirements 4-24

vii

Using Model Coverage

5
Introduction to Model Coverage . 5-2
What Is Model Coverage? . 5-2
How Model Coverage Works . 5-2
Types of Model Coverage . 5-2
Blocks That Receive Model Coverage 5-4

Using Model Coverage . 5-7
Basic Workflow for Using Model Coverage 5-7
Creating and Running Test Cases . 5-7

Specifying Model Coverage Reporting Options 5-11
Coverage Settings Dialog Box . 5-11
Coverage Tab . 5-12
Results Tab . 5-17
Report Tab . 5-18
Options Tab . 5-22

Understanding Model Coverage Reports 5-25
About Model Coverage Reports . 5-25
Summary Report Section . 5-27
Details Report Section . 5-28
Decisions Analyzed Table . 5-30
Conditions Analyzed Table . 5-31
MC/DC Analysis Table . 5-31
Cumulative Coverage Reports . 5-33

N-Dimensional Lookup Table Report 5-36

Signal Range Analysis Report . 5-43

Colored Simulink Diagram Coverage Display 5-47
How Model Coverage Highlighting Works 5-47
Enabling the Colored Diagram Display 5-47
Displaying Model Coverage with Model Coloring 5-48
Accessing Coverage Information for Colored Blocks 5-50

Using Model Coverage Commands 5-52

viii Contents

About Model Coverage Commands 5-52
Creating Tests with cvtest . 5-52
Running Tests with cvsim . 5-54
Producing HTML Reports with cvhtml 5-55
Saving Test Runs to a File with cvsave 5-56
Loading Stored Coverage Test Results with cvload 5-56
Coverage Script Example . 5-57

Using Model Coverage Commands for Referenced
Models . 5-59
Introduction . 5-59
Creating a Test Group with cv.cvtestgroup 5-62
Running Tests with cvsimref . 5-62
Extracting Results from cv.cvdatagroup 5-63

Model Coverage for Embedded MATLAB Function
Blocks . 5-64
Types of Model Coverage in Embedded MATLAB Function
Blocks . 5-64

Creating a Model with Embedded MATLAB Function Block
Decisions . 5-65

Understanding Embedded MATLAB Function Block Model
Coverage . 5-69

Customizing the Model Advisor

6
Customization Process and Guidelines 6-3

Demo and Code Example . 6-6

Registering Custom Checks, Tasks, and Groups 6-7
About Registering Custom Checks, Tasks, and Groups . . . 6-7
Methods for Registering Custom Checks and Groups 6-8
Code Example: Methods for Registering Custom Checks
and Tasks . 6-8

Creating Callback Functions for Checks 6-10

ix

About Check Callback Functions . 6-10
Simple Check Callback Function . 6-10
Detailed Check Callback Function . 6-11
Check Callback Function with Hyperlinked Results 6-13

Defining Custom Checks . 6-17
About Custom Checks . 6-17
Properties of Custom Checks . 6-17
Defining Where Custom Checks Appear 6-22
Code Example: Check Definition Function 6-23

Defining Check Input Parameters 6-26
About Input Parameters . 6-26
Properties of Input Parameters . 6-26
Specifying Input Parameter Layout 6-28
Code Example: Input Parameter Definition 6-29

Defining Check List Views . 6-31
About List Views . 6-31
Properties of List Views . 6-31
Code Example: List View Definition 6-32

Defining Check Actions . 6-33
About Actions . 6-33
Properties of Actions . 6-33
Action Callback Function . 6-34
Code Example: Action Definition . 6-34
Code Example: Action Callback Function 6-35

Defining Custom Tasks . 6-37
About Custom Tasks . 6-37
Properties of Custom Tasks . 6-37
Defining Where Tasks Appear . 6-40
Code Example: Task Definition Function 6-40

Defining Custom Groups . 6-41
About Custom Groups . 6-41
Defining Where Custom Groups Appear 6-41
Properties of Model Advisor Groups 6-42
Code Example: Group Definition . 6-43

x Contents

Defining a Process Callback Function 6-45
About Process Callback Functions . 6-45
Process Callback Function Arguments 6-45
Code Example: Process Callback Function 6-46

Formatting Model Advisor Outputs 6-48
What Is the Model Advisor Formatting API? 6-48
Formatting Text . 6-48
Formatting Lists . 6-49
Formatting Tables . 6-50
Formatting Paragraphs . 6-50
Code Example: Model Advisor Formatted Output 6-51

Function Reference
7

Requirements Management Interface 7-2

Model Coverage . 7-3

Model Advisor Customization API 7-4

Model Advisor Formatting API . 7-5

xi

Functions — Alphabetical List

8

Block Reference
9

Model Advisor Checks
10

Simulink® Verification and Validation Checks 10-2

DO-178B Checks . 10-3
Check safety-related optimization settings 10-4
Check safety-related diagnostic settings for solvers 10-8
Check safety-related diagnostic settings for sample time . . 10-11
Check safety-related diagnostic settings for signal data . . 10-14
Check safety-related diagnostic settings for parameters . . 10-17
Check safety-related diagnostic settings for data used for
debugging . 10-20

Check safety-related diagnostic settings for data store
memory . 10-22

Check safety-related diagnostic settings for type
conversions . 10-24

Check safety-related diagnostic settings for signal
connectivity . 10-26

Check safety-related diagnostic settings for bus
connectivity . 10-28

Check safety-related diagnostic settings that apply to
function-call connectivity . 10-30

Check safety-related diagnostic settings for
compatibility . 10-32

Check safety-related diagnostic settings for model
referencing . 10-34

Check safety-related model referencing settings 10-38
Check safety-related code generation settings 10-40
Check safety-related diagnostic settings for saving 10-47
Check for proper usage of For Iterator blocks 10-49

xii Contents

Check for proper usage of While Iterator blocks 10-50
Display model version information 10-52
Check for proper usage of blocks that compute absolute
values . 10-53

Check for proper usage of Relational Operator blocks 10-55

IEC 61508 Checks . 10-57
Display model metrics and complexity 10-58
Check for unconnected objects . 10-59
Check for fully defined interface . 10-60
Check for questionable blocks . 10-62
Check usage of Stateflow . 10-64
Display configuration management data 10-67
Check usage of Simulink . 10-68

MathWorks Automotive Advisory Board Checks 10-73
Check for difference in font and font sizes 10-76
Check transition orientations in flow charts 10-78
Check for display of nondefault block attributes 10-79
Check for proper labeling on signal lines 10-80
Check for propagated labels on signal lines 10-82
Check default transition placement in Stateflow charts . . 10-84
Check setting Stateflow graphical function return value . . 10-85
Check for blocks not using one-based indexing 10-86
Check for invalid file names . 10-88
Check for invalid model directory names 10-90
Check for blocks that are not discrete 10-91
Check for prohibited sink blocks . 10-92
Check for invalid port positioning and configuration 10-93
Check for mismatches between names of ports and
corresponding signals . 10-95

Check whether block names do not appear below blocks . . 10-96
Check for systems that mix primitive blocks and
subsystems . 10-97

Check whether model has unconnected block input ports,
output ports, or signal lines . 10-99

Check for improperly positioned Trigger and Enable
blocks . 10-100

Check whether annotations have drop shadows 10-101
Check whether tunable parameters specify expressions,
data type conversions, or indexing operations 10-102

Check whether Stateflow events are defined at the chart
level or below . 10-104

xiii

Check whether Stateflow data objects with local scope are
defined at the chart level or below 10-105

Check interface signals and parameters 10-106
Check for exclusive states, default states, and substate
validity . 10-107

Check optimization parameters for Boolean data types . . . 10-109
Check model diagnostic settings . 10-110
Check the display attributes of block names 10-114
Check icon display attributes for port blocks 10-115
Check whether subsystem block names include invalid
characters . 10-116

Check whether Inport and Outport block names include
invalid characters . 10-118

Check whether signal line names include invalid
characters . 10-120

Check whether block names include invalid characters . . . 10-122
Check Trigger and Enable block port names 10-124
Check for Simulink diagrams that have nonstandard
appearance attributes . 10-125

Check visibility of port block names 10-128
Check for direction of subsystem blocks 10-130
Check for proper position of constants used in Relational
Operator blocks . 10-131

Check for entry format in state blocks 10-132
Check for use of tunable parameters in Stateflow 10-134
Check for proper use of Switch blocks 10-135
Check for proper use of signal buses and Mux block
usage . 10-136

Check for mismatches between Stateflow ports and
associated signal names . 10-138

Check for proper scope of From and Goto blocks 10-139

Requirements Consistency Checks 10-140
Identify requirement links with missing documents 10-141
Identify requirement links that specify invalid locations
within documents . 10-142

Identify selection-based links having descriptions that do
not match their requirements document text 10-143

Identify requirement links with inconsistent path types and
preferences . 10-144

xiv Contents

Examples

A
Requirements Management Interface A-2

Requirements Management Interface (DOORS
Version) . A-2

Verification Manager . A-2

Model Coverage . A-2

Index

xv

xvi Contents

1

Getting Started

The Simulink® Verification and Validation™ software uses component tools
that contribute to the work of certifying the correct design, implementation,
and testing of Simulink® models. Use the following topics to become familiar
with the Simulink Verification and Validation software.

• “Product Overview” on page 1-2

• “System Requirements” on page 1-3

• “Organization of This User’s Guide” on page 1-4

1 Getting Started

Product Overview
The Simulink Verification and Validation software is a Simulink product that
helps you do the following:

• Establish requirements for a Simulink model by linking them with model
elements that satisfy them

• Verify proper function of the model by monitoring model signals during
extensive testing

• Validate the model, making sure that all possible model decisions are
taken through testing.

• Customize the Model Advisor to analyze a model for settings that result in
inaccuracies or inefficiencies.

In short, the elements of the Simulink Verification and Validation software
give you confidence in the behavior of your Simulink models.

1-2

System Requirements

System Requirements

In this section...

“Operating System Requirements” on page 1-3
“Product Requirements” on page 1-3

Operating System Requirements
The Simulink Verification and Validation software works with the following
operating systems:

• Microsoft® Windows® XP and Windows Vista™

• UNIX® systems where the MATLAB® software supports the Java™
programming language (for HTML-based requirements documents only)

Product Requirements
The Simulink Verification and Validation software requires the following
MathWorks™ products:

• MATLAB

• Simulink

If you want to use the Requirements Management Interface with Stateflow®
charts, the Simulink Verification and Validation software requires the
following MathWorks product:

• Stateflow

The Requirements Management Interface in the Simulink Verification and
Validation software allows you to associate requirements with Simulink
models and Stateflow charts. The software supports the following applications
for documenting requirements:

• Microsoft Word 2000 or later

• Microsoft® Excel® 98 or later

• Telelogic® DOORS® 6.0 or later

1-3

1 Getting Started

Organization of This User’s Guide
The component tools of the Simulink Verification and Validation software are
organized on the basis of work flow that you follow in certifying the correct
and complete behavior of your models. This work flow is described in the
following steps:

1 Establish performance requirements for the model and link them with
model elements using the Requirements Management Interface, which is
described in the following chapters:

• Chapter 2, “Managing Model Requirements” — Instructions for using the
standard version of the Requirements Management Interface. Use this to
associate Simulink models, Stateflow charts, and MATLAB M-files with
requirements in HTML, Microsoft Word, and Microsoft Excel documents.

• Chapter 3, “Managing Model Requirements with DOORS Software” —
Instructions for using the DOORS® software with the Requirements
Management Interface. Use this if you want to associate Simulink
models, Stateflow charts, and MATLAB M-files with requirements in
the DOORS software.

2 Verify proper performance of the model by monitoring model signals during
extensive testing with model verification blocks using the Verification
Manager, which is described in the following chapter:

• Chapter 4, “Managing Model Verification Blocks” — Shows you how
to use verification blocks individually in Simulink models and how to
manage them as a group for testing.

3 Validate the model by making sure that all possible model decisions are
taken through testing, by using the Model Coverage tool, which is described
in the following chapter:

• Chapter 5, “Using Model Coverage” — Shows you how to generate and
interpret model coverage reports and displays for validating model
decisions.

4 Customize the Model Advisor to analyze your model for conditions and
configuration settings that result in inaccurate or inefficient simulation
or code generation. You can write custom checks, tasks, and callback
functions, as described in the following chapter:

1-4

Organization of This User’s Guide

• Chapter 6, “Customizing the Model Advisor” — Shows you how to
define custom checks and tasks, write callback functions, and register
customizations for Model Advisor.

The last portion of the User’s Guide is comprised of function and block
reference chapters:

• Chapter 7, “Function Reference” — Provides a categorical list of functions
used in executing and managing model coverage tests and reports from the
MATLAB prompt. Automate your model coverage tests with scripts of
MATLAB commands calling these functions.

• Chapter 8, “Functions — Alphabetical List” — Provides an alphabetical
reference of functions used in executing and managing model coverage
tests and reports from the MATLAB prompt.

• Chapter 9, “Block Reference” — Provides reference information for the
Simulink Verification and Validation library, which currently contains
only one block, System Requirements. This block lets you list all the
requirements for a model or subsystem on its Simulink diagram.

1-5

1 Getting Started

1-6

2

Managing Model
Requirements

The Requirements Management Interface (RMI) associates requirements
documents with objects in Simulink models. To learn how to use the RMI, see
the following sections:

• “What Is the Requirements Management Interface?” on page 2-2

• “Configuring the Requirements Management Interface” on page 2-3

• “Adding and Viewing Requirement Links” on page 2-4

• “Linking to Custom Types of Requirements Documents” on page 2-28

• “Viewing Objects with Requirement Links” on page 2-45

• “Generating a Requirements Report” on page 2-48

• “Displaying the System Requirements in a Diagram” on page 2-50

• “Including Requirements with Generated Code” on page 2-56

2 Managing Model Requirements

What Is the Requirements Management Interface?
The Requirements Management Interface (RMI) allows you to associate
requirements with Simulink models and Stateflow charts. In general, a
requirement has the following attributes:

• A requirement description of up to 255 characters

• The path name of a requirements document, such as a Microsoft Word
file. (The Requirements Management Interface supports several built-in
document formats and also allows you to register your own custom types of
requirements documents.)

• A link to a location inside the requirements document

Use the Requirements Management Interface to

• Associate requirements with

- Simulink models

- Simulink subsystems and blocks

- Stateflow charts, states, transitions, boxes, and functions

• Navigate from a Simulink block or Stateflow object in a diagram or in the
Model Explorer to a requirement

• Navigate from an embedded link in a requirements document to the
corresponding Simulink or Stateflow object (when you create two-way links
using the selection-based linking mechanism)

• View objects in Simulink or Stateflow diagrams that have requirements
associated with them

2-2

Configuring the Requirements Management Interface

Configuring the Requirements Management Interface
Before you start using the Requirements Management Interface, in the
MATLAB Command Window type

rmi setup

This command runs a setup script that installs Microsoft® ActiveX® controls
needed for establishing two-way selection-based links. If the Telelogic
DOORS software is installed on the machine, this command also invokes
the corresponding setup script. For more information, see “Configuring the
Requirements Management Interface for DOORS Software” on page 3-3.

2-3

2 Managing Model Requirements

Adding and Viewing Requirement Links

In this section...

“Object and Document Types” on page 2-4
“Adding Requirement Links to an Object” on page 2-7
“Viewing Requirements Documents” on page 2-14
“Resolving the Document Path” on page 2-17
“Adding Requirement Links to Multiple Objects Simultaneously” on page
2-18
“Selection-Based Linking” on page 2-22

Object and Document Types
You can add requirements to the following types of objects:

• Simulink model

• Simulink block

• Stateflow chart, state, transition, box, or function

Note You can add requirements to top-level reference blocks but not to their
contents. For example, if you copy a subsystem consisting of multiple blocks
from a library, you can add requirements to the subsystem block in your
model, but not to its component blocks.

The Requirements Management Interface supports the following built-in
types of requirements documents:

• Text

• HTML

• Microsoft Word

• Microsoft Excel

2-4

Adding and Viewing Requirement Links

• PDF

You can also link to an item in the Telelogic DOORS software (see “Linking
Objects to DOORS Requirements” on page 3-9), or register your own custom
type of documents to link to (see “Linking to Custom Types of Requirements
Documents” on page 2-28).

Location Types
Depending on the document type, you can link to specific locations within
a document.

Document
Type

Location Options

Text • Search text — Type a string in the Location text field.
The Requirements Management Interface searches for the
first occurrence of the text string within the document.
This search is not case sensitive.

• Line number— Type a line number in the Location text
field. The Requirements Management Interface makes a
link to the specified line.

HTML You can link only to a named anchor.

For example, if you define the anchor

 ...contents...

in your HTML requirements document, you can enter
valve_timing in the Location text field or click the
Document Index tab to select valve_timing from an
automatically generated list of anchors in the document.

2-5

2 Managing Model Requirements

Document
Type

Location Options

Microsoft
Word

• Search text — Type a string in the Location text field.
The Requirements Management Interface searches for the
first occurrence of the text string within the document.
This search is not case sensitive.

• Named item — Link to a bookmark within the document.
The Requirements Management Interface automatically
generates a document index based on its headings and
bookmarks, or you can type the name in the Location
text field.

• Page/item number—Type a page number in the Location
text field. The Requirements Management Interface makes
a link to the top of the page.

Microsoft
Excel

• Search text — Type a string in the Location text field.
The Requirements Management Interface searches for the
first occurrence of the text string within the document.
This search is not case sensitive.

• Named item— Link to a named item within the document
(defined in the Excel® software using Insert > Name).
Type the name in the Location text field.

• Sheet range— Type a cell number or a range of cells (such
as C5:D7) in the Location text field. The Requirements
Management Interface makes a link to the specified cell
or cells.

2-6

Adding and Viewing Requirement Links

Document
Type

Location Options

PDF • Named item — Link to a bookmark within the document.
The Requirements Management Interface automatically
generates a document index based on its headings and
bookmarks, or you can type the bookmark name in the
Location text field.

• Page/item number—Type a page number in the Location
text field. The Requirements Management Interface makes
a link to the top of the page.

Web
Browser
URL

You can link to a URL location only. Type the URL location
string in the Document text field. When you follow the link,
the document opens in a Web browser.

Adding Requirement Links to an Object
You use the Requirements dialog box to associate a requirements document
with a requirements object. You can link a particular location in an existing
Microsoft Word or HTML document to a block in a Simulink diagram or
a Stateflow object in a Stateflow chart. In this procedure, you add three
requirement links to a Simulink block in the demo model sf_car. In later
topics, you modify both the links and the documents they point to.

1 Create and save the Microsoft Word document requirements.doc with the
following format. Style the header lines (Primary Requirements, Second
Requirements, Tertiary Requirements) as Heading 1 in Microsoft Word.

2-7

2 Managing Model Requirements

2-8

Adding and Viewing Requirement Links

2 Type sf_car at the MATLAB prompt to open the demo model sf_car.

3 Right-click the Engine block and, from the pop-up menu, select
Requirements > Edit/Add Links.

The Requirements dialog box for the Engine block appears.

4 In the Requirements dialog box, click New to add a new requirement.

Fields and tools of the Requirements dialog box are now enabled for the
new requirement.

5 Click in the Description field and enter Requirement 1.

6 Click Browse next to the Document type field, browse to the
requirements document requirements.doc, and select Open.

2-9

2 Managing Model Requirements

The Document type field is now set to Microsoft Word. If you specify
the document type in the Document type field prior to browsing for the
requirements document, only the files of the appropriate type appear. If
you set Document type to Unspecified Type, all files are listed.

7 To define a particular location in the document, click the Document Index
tab to create an index of the requirements document.

8 Select Primary Requirements from the automatically generated list of
headings and bookmarks in the document.

2-10

Adding and Viewing Requirement Links

If your document does not contain headings or bookmarks, click the
Requirements tab.

Select Search text from the Location drop-down list and enter Primary
Requirements in the text field. The search text feature is not case-sensitive;
primary requirements and PRIMARY REQUIREMENTS work the same in
this example.

2-11

2 Managing Model Requirements

9 To provide additional details about the current requirement, enter text in
the User tag field. Entering text in the User tag field is optional.

10 Click Apply.

11 Select Requirement 1 and click Copy to create a copy of Requirement 1 as
a new requirement.

12 In the Description field, replace Copy of Requirement 1 with
Requirement 2, and link Requirement 2 to the text “Secondary
Requirements” in requirements.doc.

In addition to the Copy tool, you can edit existing requirements using the
following tools.

Tool Button Description

Delete Deletes the requirement.

2-12

Adding and Viewing Requirement Links

Tool Button Description

Up Moves the selected requirement up one line in the list
of requirements.

Down Moves the selected requirement down one line in the list
of requirements.

The Requirements dialog box makes it easier for you to enter a previous
document name by remembering up to five of the most recent documents
entered. The list of five is taken for all entries made across all models. For
example, if you add a new requirement after entering two requirements for
the Engine block, and click the drop-down arrow in the Document field for
the new requirement, a selectable list of previous requirements documents
like the following example would appear.

2-13

2 Managing Model Requirements

13 Click Apply to apply the requirement links you have added and click OK
to close the Requirements dialog box.

Note When you add a requirement link to a block such as a subsystem,
the requirement is not added to children of the block.

14 Save the model as my_sf_car.mdl.

You use this model in “Viewing Requirements Documents” on page 2-14.

Viewing Requirements Documents
You can access a requirements document through its associated model
element. In this section, you access the requirements document using one of
the Engine block requirements links:

1 In the my_sf_car model, right-click the Engine block and select
Requirements from the context menu.

The requirements you added now appear as submenu selections.

2-14

Adding and Viewing Requirement Links

2 Select Requirement 2 from the submenu.

requirements.doc opens in its editor, the Microsoft Word software, and
the first occurrence of Secondary Requirements is highlighted.

2-15

2 Managing Model Requirements

If string text is not specified or does not exist in the requirements document,
the requirements document opens with the cursor at the beginning of the
file.

3 Keep requirements.doc and the my_sf_car model open; you will use
them in “Adding Requirement Links to Multiple Objects Simultaneously”
on page 2-18.

2-16

Adding and Viewing Requirement Links

Resolving the Document Path
Browsing for a document to enter it in a requirements link enters the location
of the document with a fully specified absolute path. You can also enter a
relative path for the document location. A relative path can be a partial path
or no path at all. In many cases it is preferable to use a relative path so that
the document is not constrained to a single location in the file system. With
a relative path the Requirements Management Interface resolves the exact
location of the requirements document in this order:

1 An attempt is made to resolve the path relative to the current MATLAB
directory.

2 If there is no path specification and the document is not in the current
directory, the MATLAB search path is used to locate the file.

3 If the document is not located relative to the current directory or the
MATLAB search path, it is resolved relative to the model file directory.

The following examples illustrate the procedure for locating the specified
requirements document.

Relative Path Specified Example

Current MATLAB
directory:

C:\work\scratch

Model file: C:\work\models\controllers\pid.mdl

Document link: ..\reqs\pid.html

Documents searched for:
(in order)

C:\work\reqs\pid.html
C:\work\models\reqs\pid.html

No Path Specified Example

Current MATLAB
directory:

C:\work\scratch

Model file: C:\work\models\controllers\pid.mdl

2-17

2 Managing Model Requirements

Requirements
document:

pid.html

Documents searched for:
(in order)

C:\work\scratch\pid.html
<MATLAB path dir>\pid.html
C:\work\models\controllers\pid.html

Absolute Path Specified Example

Current MATLAB
directory:

C:\work\scratch

Model file: C:\work\models\controllers\pid.mdl

Requirements
document:

C:\work\reqs\pid.html

Documents searched for: C:\work\reqs\pid.html

Adding Requirement Links to Multiple Objects
Simultaneously
You can add or delete requirement links for a selection of multiple Simulink
blocks or Stateflow objects as follows:

1 In the my_sf_car model, select the Engine, engine RPM, and transmission
blocks.

2-18

Adding and Viewing Requirement Links

���������	�
���

You can select multiple Simulink blocks or Stateflow objects in one of the
following ways:

• Hold down the Shift key while clicking each block.

• Click and drag a selection rectangle around them.

2 Right-click any of the selected blocks and select Requirements > Add
Links to All.

The Add Requirements dialog box appears, as shown, for the three selected
blocks.

2-19

2 Managing Model Requirements

3 Add a new Requirement 3 for these blocks that points to the text “Tertiary
Requirements” in the file requirements.doc.

Add the requirement as you would for a single block, as described in
“Adding Requirement Links to an Object” on page 2-7.

Note When you add a requirement link to a block such as a subsystem,
the requirement is not added to children of the block.

4 Click Apply to apply the requirement links.

5 Click OK to close the Requirements dialog box.

6 In the my_sf_car model, click outside the three objects to deselect them.

2-20

Adding and Viewing Requirement Links

7 Right-click the Engine block and select Requirements.

The Engine block now has three requirements, as shown.

8 Right-click the engine RPM and transmission blocks to verify that they
have only one requirement—Requirement 3.

9 Save the my_sf_car model.

Deleting All Requirement Links for Multiple Objects
Simultaneously
To delete the existing requirements for a group of selected blocks, right-click
any of a group of selected blocks and, from the resulting context menu, select
Requirements > Delete All. This deletes all the requirement links for all
the selected blocks, whether they were added individually or as a group.

2-21

2 Managing Model Requirements

Selection-Based Linking
Selection-based linking is a quick way to create links between model elements
and selected portions of a requirements document, which can be a Microsoft
Word or Excel file only. This method creates a two-way link by embedding
a Microsoft ActiveX control into the requirements document next to the
selected string or cell.

Configuring Selection-Based Linking
Use the following procedure to configure selection-based linking:

1 Open the my_sf_car model, if necessary.

2 In the model window, select Tools > Requirements > Link settings. The
Selection-based linking dialog box opens.

3 Select the check box next to Word if necessary.

4 Specify the following preferences on the Selection-based linking dialog box:

• In the Document file reference drop-down list, specify how to store the
document location. For more information, see “Resolving the Document
Path” on page 2-17.

• To create two-way links, select Modify documents to include links
to models. Two-way linking embeds an ActiveX® control in your
requirements document, which lets you navigate from the requirements
document to the Simulink model and vice versa.

2-22

Adding and Viewing Requirement Links

• If you create two-way links the Model file reference drop-down list,
specify how to locate the model when you navigate from a requirements
document to the model using one of these two options:

– none (on MATLAB path) — The model is located on the MATLAB
path.

– Absolute— Use the absolute path to locate the model.

5 Click OK to close the Selection-based linking dialog box.

Making Selection-Based Links
Use the following procedure to create selection-based requirement links:

1 Right-click the Engine block and select Requirements > “Requirement
1”.

requirements.doc opens in a Microsoft Word window.

2 Select a portion of the text that documents the desired requirement. For
this example, select a “Dummy text.” string.

2-23

2 Managing Model Requirements

3 In the Simulink model, right-click the Engine block and select
Requirements > Add link to Word selection.

Note The Word document must be open and text must be selected for the
Add link to Word selection option to work. If no Word document is open,
you are asked to open a document or cancel the operation.

The Requirement Management Interface creates the link. If you right-click
the Engine block and select Requirements, the Engine block now has
four requirement links.

2-24

Adding and Viewing Requirement Links

If you select Requirements > Dummy text., a Microsoft Word window
opens with the requirements document scrolled to the appropriate text.

If you configured two-way linking, an ActiveX control is embedded in
the requirements document next to the selected string.

2-25

2 Managing Model Requirements

4 Click the ActiveX control to display the my_sf_car model, with the Engine
block highlighted.

2-26

Adding and Viewing Requirement Links

2-27

2 Managing Model Requirements

Linking to Custom Types of Requirements Documents

In this section...

“Why Create a Custom Link Type?” on page 2-28
“Custom Link Type Registration” on page 2-29
“Built-In Link Types” on page 2-29
“Link Properties” on page 2-30
“Link Type Properties” on page 2-30
“Creating a Custom Link Requirement Type” on page 2-32
“Navigating to Simulink Models from External Documents” on page 2-42

Why Create a Custom Link Type?
In addition to linking to built-in types of requirements documents as
described previously, you can register your own custom types of requirements
documents with the Requirements Management Interface, and then create
requirement links to these types of documents.

Custom link types let you define how you open and navigate a document, and
how you or another user can browse for a document and view an index of its
contents. When you define a custom link type, you create MATLAB M-code
functions that perform these operations. The Requirements Management
Interface invokes the registered code when navigating to a document with the
new link type, and when browsing for a document or displaying the index of
a document within the Requirements dialog box.

Using the external interfaces supported by the MATLAB software, you can
communicate with external applications and run programs from the command
shell. You can also use the built-in Web browser and text editor to display
custom variants of HTML and text files without loading external applications.

Custom link types enable you to

• Link to requirement items in commercial requirement tracking software

• Link to in-house database systems

2-28

Linking to Custom Types of Requirements Documents

• Link to document types that are not internally supported in the tool

Custom Link Type Registration
You register custom link types with a unique MATLAB function name. The
function must exist on the MATLAB path and must not require any input
arguments. It must return a single output argument that is an instance of
the requirements link type class. You can register your link type with the
following MATLAB command:

rmi register mytargetfilename

where mytargetfilename is the name of the MATLAB function contained in
the M-file named mytargetfilename.m.

Once you register a link type, it appears as an entry in the Document type
drop-down list in the Requirements dialog box. The list of registered link
types is stored in a file in your preference directory, so it can be restored
in new MATLAB sessions. You can remove a link type with the following
MATLAB command:

rmi unregister mytargetfilename

When you create links using custom link types, the registration name is
saved in the model. When you attempt to navigate a link, the Requirements
Management Interface resolves the link type against the registered list and
displays an error message if the link type is not found.

Built-In Link Types
Built-in link types use the same format and naming convention as custom
types, although they use a different system for identification in the model file
that supports backwards and forwards compatibility. You can use the built-in
types as examples when developing your custom link types. The files for
built-in link types are contained in the private directory of the requirements
management tool (matlabroot\toolbox\slvnv\reqmgt\private):

linktype_rmi_doors.m
linktype_rmi_excel.m
linktype_rmi_html.m
linktype_rmi_pdf.m

2-29

2 Managing Model Requirements

linktype_rmi_text.m
linktype_rmi_word.m

Link Properties
Requirement links are the data structures, saved in the Simulink model,
that identify a specific location within a document. You can get and set the
links on a block using the rmi command. Link information is encapsulated
within a MATLAB structure array. Each element of the array is a single
requirement link.

Links and link types work together to perform navigation and manage
requirement interfaces. The document and ID fields of links uniquely identify
the linked item in an external document. The Requirements Management
Interface passes both of these string parameters to the navigation command of
the associated link type when it follows a link from the model or a generated
report.

Link Type Properties
Link type properties define how links are created, identified, navigated and
stored within the requirement management tool. The following table explains
each of these properties.

Property Description

Registration The name of the M-file that creates the link type. This is
stored in the Simulink model.

Label A string to identify this link type. It is displayed on the
Document type drop-down list in the Requirements
dialog box for a Simulink or Stateflow object.

IsFile A Boolean property that indicates if the linked documents
are files within the computer file system. If a document is
a file, then the standard method for resolving the path is
used and the standard file selection dialog is invoked when
the user clicks the Browse button in the Requirements
dialog box.

2-30

Linking to Custom Types of Requirements Documents

Property Description

Extensions An array of file extensions. These are used as filter options
for the Browse button in the Requirements dialog box.
The extensions are also used to infer the link type based
on the document name. If more than one link type is
registered for the same file extension, the link type that
was registered first takes priority.

LocDelimiters A string containing the list of supported navigation
delimiters. The first character in the ID of a requirement
specifies the type of identifier. For example, an
identifier might refer to a specific page number (#4),
a named bookmark (@my_tag), or some text to search
(?search_text). The valid location delimiters determine
the possible entries on the Location drop-down list in
the Requirements dialog box.

NavigateFcn The MATLAB callback that is invoked when a user
follows a link. The function is evaluated with two input
arguments, the document field and the ID field of the link:

feval(LinkType.NavigateFcn, Link.document, Link.id)

ContentsFcn The MATLAB callback that is invoked when a user clicks
the Document Index tab in the Requirements dialog box.
This function is evaluated with a single input argument
containing the full path of the resolved function, or the
entry from the Document field if the link type is not a file.
The function should return three outputs:

• Labels

• Depths

• Locations
BrowseFcn The MATLAB callback that is invoked when a user presses

the Browse button in the Requirements dialog box. This
function is unnecessary when the link type is a file. The
function should not take any input arguments and should
return a single output argument identifying the document
that the user selected.

2-31

2 Managing Model Requirements

Creating a Custom Link Requirement Type
In this example, you implement a custom link type to a hypothetical document
format, which is a text file with the extension .abc. Within a document, the
requirement items are identified with a special text string Requirement::,
followed by a single space and then the requirement item inside double quotes
(").

You provide the ability to see a document index, containing a listing of all
the requirement items. When navigating from the Simulink model to the
requirements document, the document opens in the MATLAB editor and pans
the display to the line containing the desired requirement item.

Use the following procedure to create a custom link requirement type:

1 Write a function that implements the custom link type and save
it as an M-file on the MATLAB path. In this example, the file
rmicustabcinterface.m, containing the function rmicustabcinterface
that implements the ABC files, is included in the installation. You can view
it below, or by typing edit rmicustabcinterface at the MATLAB prompt.

function linkType = rmicustabcinterface
%RMICUSTABCINTERFACE - Example custom requirement link type
%
% This file implements a requirements link type that maps
% to "ABC" files.
% You can use this link type to map a line or item within an
% ABC file to a Simulink or Stateflow object.
%
% You must register a custom requirement link type before
% using it. Once registered, the link type will be reloaded in
% subsequent sessions until you unregister it. The following
% commands perform registration and registration removal.
%
% Register command: >> rmi register rmicustabcinterface
% Unregister command: >> rmi unregister rmicustabcinterface
%
% There is an example document of this link type contained in
% the requirement demo directory to determine the path to the
% document invoke:
%

2-32

Linking to Custom Types of Requirements Documents

% >> which demo_req_1.abc

% Copyright 1984-2005 The MathWorks, Inc.
% $Revision: 1.1.4.3 $ $Date: 2007/01/21 11:56:15 $

% Create a default (blank) requirement link type
linkType = ReqMgr.LinkType;
linkType.Registration = mfilename;

% Label describing this link type
linkType.Label = 'ABC file (for demonstration)';

% File information
linkType.IsFile = 1;
linkType.Extensions = {'.abc'};

% Location delimiters
linkType.LocDelimiters = '>@';
linkType.Version = ''; % not needed

% Uncomment the functions that are implemented below
linkType.NavigateFcn = @NavigateFcn;
linkType.ContentsFcn = @ContentsFcn;

function NavigateFcn(filename,locationStr)
if ~isempty(locationStr)

findId=0;
switch(locationStr(1))
case '>'

lineNum = str2num(locationStr(2:end));
openFileToLine(filename, lineNum);

case '@'
openFileToItem(filename,locationStr(2:end));

otherwise
openFileToLine(filename, 1);

end
end

2-33

2 Managing Model Requirements

function openFileToLine(fileName, lineNum)
if lineNum > 0

err = javachk('mwt', 'The MATLAB Editor');
if isempty(err)

editor = com.mathworks.mlservices.MLEditorServices;
editor.openDocumentToLine(fileName, lineNum);

end
else

edit(fileName);
end

function openFileToItem(fileName, itemName)
reqStr = ['Requirement:: "' itemName '"'];
lineNum = 0;
fid = fopen(fileName);
i = 1;
while lineNum == 0

lineStr = fgetl(fid);
if ~isempty(strfind(lineStr, reqStr))

lineNum = i;
end;
if ~ischar(lineStr), break, end;
i = i + 1;

end;
fclose(fid);
openFileToLine(fileName, lineNum);

function [labels, depths, locations] = ContentsFcn(filePath)
% Read the entire M-file into a variable
fid = fopen(filePath,'r');
contents = char(fread(fid)');
fclose(fid);

% Find all the requirement items
fList1 = regexpi(contents,'\nRequirement:: "(.*?)"','tokens');

% Combine and sort the list
items = [fList1{:}]';

2-34

Linking to Custom Types of Requirements Documents

items = sort(items);
items = strcat('@',items);

if (~iscell(items) && length(items)>0)
locations = {items};
labels = {items};

else
locations = [items];
labels = [items];

end

depths = [];

2 To register the custom link type ABC, type the following MATLAB
command:

rmi register rmicustabcinterface

This causes the ABC file type to be added to the drop-down list of document
types in the Requirements dialog box.

3 Create a text file with the .abc extension, containing several
requirement items marked by the Requirement:: string, as described
above. For your convenience, an example of such a file is included
in the installation. It is named demo_req_1.abc, and is located in
matlabroot\toolbox\slvnv\rmidemos. demo_req_1.abc contains the
following content:

Requirement:: "Altitude Climb Control"

Altitude climb control is entered whenever:
|Actual Altitude- Desired Altitude | > 1500

Units:
Actual Altitude - feet
Desired Altitude - feet

Description:

2-35

2 Managing Model Requirements

When the autopilot is in altitude climb
control mode, the controller maintains a
constant user-selectable target climb rate.

The user-selectable climb rate is always a
positive number if the current altitude is
above the target altitude. The actual target
climb rate is the negative of the user
setting.

<END "Altitude Climb Control">

Requirement:: "Altitude Hold"

Altitude hold mode is entered whenever:
|Actual Altitude- Desired Altitude | <

30*Sample Period*(Pilot Climb Rate / 60)

Units:
Actual Altitude - feet
Desired Altitude - feet
Sample Period - seconds
Pilot Climb Rate - feet/minute

Description:

The transition from climb mode to altitude
hold is based on a threshold that is
proportional to the Pilot Climb Rate.

At higher climb rates the transition occurs
sooner to prevent excessive overshoot.

<END "Altitude Hold">

Requirement:: "Autopilot Disable"

2-36

Linking to Custom Types of Requirements Documents

Altitude hold control and altitude climb
control are disabled when autopilot enable
is false.

Description:

Both control modes of the autopilot
can be disabled with a pilot setting.

<END "Autopilot Disable">

Requirement:: "Glide Slope Armed"

Glide Slope Control is armed when Glide
Slope Enable and Glide Slope Signal
are both true.

Units:
Glide Slope Enable - Logical
Glide Slope Signal - Logical

Description:

ILS Glide Slope Control of altitude is only
enabled when the pilot has enabled this mode
and the Glide Slope Signal is true. This indicates
the Glide Slope broadcast signal has been
validated by the on board receiver.

<END "Glide Slope Armed">

Requirement:: "Glide Slope Coupled"

Glide Slope control becomes coupled when the control
is armed and (Glide Slope Angle Error > 0) and

2-37

2 Managing Model Requirements

Distance < 10000

Units:
Glide Slope Angle Error - Logical
Distance - feet

Description:

When the autopilot is in altitude climb control
mode the controller maintains a constant user
selectable target climb rate.

The user-selectable climb rate is always a positive
number if the current altitude is above the target
altitude the actual target climb rate is the
negative of the user setting.

<END "Glide Slope Coupled">

4 Open the model my_sf_car.

5 Right-click the Engine block and, from the resulting pop-up menu, select
Requirements > Edit/Add Links.

The Requirements dialog box appears.

6 Click New to add a new default requirement. Note that ABC file type is
now available in the Document type drop-down list, as shown.

2-38

Linking to Custom Types of Requirements Documents

7 Set Document type to ABC file (for demonstration) and browse to
the demo_req_1.abc file, or to your own .abc requirements file that you
created in Step 3. Note that the browser shows only the files with the
.abc extension.

8 Define a particular location in the document. In this example, you can
either use a line number or a requirement name as the item identifier, so
the location delimiters in the rmicustabcinterface function are specified
as ’>@’. As a result of this parameter, the Location drop-down menu
contains these two items whenever the document type is set to ABC file, as
shown.

2-39

2 Managing Model Requirements

Creating a Document Index
The example file format clearly defines requirement items that are easily
listed. To generate a document index, set the ContentsFcn to a valid
function. The MATLAB M-code uses file I/O functions to read the contents
into a MATLAB variable. The Requirements Management Interface uses
the regular expression utility in the MATLAB software to extract a list of
requirement items that it returns.

The following code generates an index for the ABC files.

function [labels, depths, locations] = ContentsFcn(filePath)
% Read the entire M-file into a variable
fid = fopen(filePath,'r');
contents = char(fread(fid)');
fclose(fid);

2-40

Linking to Custom Types of Requirements Documents

% Find all the functions
fList1 = regexpi(contents,'\nRequirement:: "(.*?)"','tokens');

% Combine and sort the list
items = [fList1{:}]';
items = sort(items);
items = strcat('@',items);

locations = [items];
labels = [items];
depths = [];

For example, for the demo_req_1.abc file discussed earlier in “Creating a
Custom Link Requirement Type” on page 2-32, this function generates the
document index as shown in the following illustration.

2-41

2 Managing Model Requirements

Navigating to Simulink Models from External
Documents
The Requirements Management Interface includes several functions that
simplify creating navigation interfaces in external documents. The external
application that displays your document must support an application program
interface (API) for communicating with the MATLAB software.

Providing Unique Object Identifiers
Whenever you create a requirement link for a Simulink or Stateflow object, a
globally unique identifier is created for that object. This identifier is used to
identify the object and does not change if the object is renamed or moved or
when requirement links are added or deleted. Although the unique identifier
is only used to resolve an object within a model, the identifier is globally
unique and should not collide with identifiers in other models unless the two
models derive from the same original model. Unique object identifiers have
formats like GIDa_cd14afcd_7640_4ff8_9ca6_14904bdf2f0f.

Using the rmiobjnavigate Utility
The rmiobjnavigate function performs the required actions to identify the
appropriate Simulink or Stateflow object, highlight that object, and bring the
appropriate editor window to the front of the screen. When you navigate
to a Simulink model from an external application, invoke this command.
Internally this function creates a table of all the unique object identifiers
within a model, which is used for efficient object lookup.

The first time you navigate to an item in a particular model, there may be a
slight delay while the internal navigation table is constructed. Subsequent
navigation should have minimal delay.

Determining the Navigation Command
Once you have created a requirement link for a Simulink or Stateflow object,
you can find the appropriate navigation command string by using the rmi
function at the MATLAB prompt. The return value of the navCmd method is a
string that navigates to the correct object when evaluated by the MATLAB
software:

cmdString = rmi('navCmd', block);

2-42

Linking to Custom Types of Requirements Documents

You need to send this exact string to the MATLAB software for evaluation as
part of navigating from the external application to the Simulink model.

Using the ActiveX Navigation Control
A special Microsoft ActiveX control is included with the Simulink Verification
and Validation software and is used to enable linking to Simulink models
from Microsoft Word and Excel documents. You can use this same control
from any other application that supports ActiveX within its documents.

The control is derived from a push button and has the Simulink icon.
There are two instance properties that define how the control works. The
tooltipstring property is the string that is displayed in the ToolTip of the
control. The MLEvalCmd property is the string that is passed to the MATLAB
software for evaluation when the control is pushed.

Typical Code Sequence for Establishing Two-Way Links
When you create an interface to an external tool, the procedure for
establishing links can often be automated so that no dialog fields need to be
manually updated. This type of automation is part of the selection-based
linking that is implemented for certain built-in types, such as Microsoft Word
and Excel documents.

In generic terms, use the following process:

1 Select a Simulink or Stateflow object and an item in the external document.

2 Invoke the link creation action either from a Simulink menu or command,
or a similar mechanism in the external application.

3 Identify the document and current item using the scripting capability of the
external tool. Pass this information to the MATLAB software and create
a requirement link on the selected object using rmi('createempty') and
rmi('cat').

4 Determine the MATLAB navigation command string that must be
embedded in the external tool using the navCmd method:

cmdString = rmi('navCmd',obj)

2-43

2 Managing Model Requirements

5 Create a navigation item in the external document using the scripting
capability of the external tool and set the MATLAB navigation command
string in the appropriate property.

You can use the code for selection-based linking to the Word, Excel, and
Telelogic DOORS software as an example of this type of automation. The files
are contained in matlabroot\toolbox\slvnv\reqmgt\private:

selection_link_doors.m
selection_link_excel.m
selection_link_word.m

2-44

Viewing Objects with Requirement Links

Viewing Objects with Requirement Links
After you have added requirements to blocks in a model, you can change
the view in the Model Explorer window to show only objects that have
requirements associated with them. In “Adding Requirement Links to an
Object” on page 2-7 and “Adding Requirement Links to Multiple Objects
Simultaneously” on page 2-18, you add requirements to the Engine, Engine
RPM, and transmission blocks in the model you save as my_sf_car. Use
the following procedure to highlight these objects in the Model Explorer and
Simulink model window:

1 Open the model my_sf_car.

2 From the Simulink View menu, select Model Explorer.

3 The model and its elements appear in the Model Explorer window as shown.

2-45

2 Managing Model Requirements

4 In the Model Explorer toolbar, select the Display Objects with Linked
Requirements tool .

5 To see all objects, click the Display Objects with Linked Requirements tool
again to deselect it.

You can also highlight blocks of a Simulink model with associated
requirements in a Simulink model window as follows:

1 In the Model Explorer toolbar, select the Highlight Items with
Requirements in Model tool .

2-46

Viewing Objects with Requirement Links

�����������	�
���������������������

2 To drop the highlighting, click the Highlight Items with Requirements
in Model tool again to deselect it.

2-47

2 Managing Model Requirements

Generating a Requirements Report
After you have added requirements to a model, you can generate a report on
all the requirements associated with the model and its blocks. In “Adding
Requirement Links to an Object” on page 2-7 and “Adding Requirement Links
to Multiple Objects Simultaneously” on page 2-18, you add requirements to
the Engine, engine RPM, and transmission blocks in the model you save as
my_sf_car. Use the following procedure to generate a requirements report:

1 Open the model my_sf_car.

2 From the Simulink Tools menu, select Requirements > Generate
Report.

The Requirements Management Interface searches through all the
blocks and subsystems in the model for associated requirements,
generates a complete report in HTML format with the default name
requirements.html, and displays it in your systemWeb browser, as shown.

2-48

Generating a Requirements Report

3 Save the report with a meaningful name. Select File > Save As, enter the
file name, and click Save.

2-49

2 Managing Model Requirements

Displaying the System Requirements in a Diagram

In this section...

“About the System Requirements Block” on page 2-50
“Adding the System Requirements Block” on page 2-50
“Renaming the System Requirements Block” on page 2-53
“Changing Fonts for the System Requirements Block” on page 2-54

About the System Requirements Block
You can list all the requirements for a model or a subsystem directly on the
Simulink diagram. You do this by adding the System Requirements block
from the Simulink Verification and Validation library to the diagram. You
can place this block anywhere in a diagram. It is not connected to other
Simulink blocks.

Once you place the System Requirements block in a Simulink diagram, it
automatically lists the requirements associated with the model or subsystem
depicted in the current diagram. It does not list requirements associated
with individual blocks in the diagram.

Adding the System Requirements Block
In “Adding Requirement Links to an Object” on page 2-7, you added
requirement links to the Engine block of the model my_sf_car. You can list
these requirements in the block diagram of the Engine subsystem as follows:

1 Open the model my_sf_car.

2 Double-click on the Engine block. The Engine subsystem diagram opens, as
shown.

2-50

Displaying the System Requirements in a Diagram

3 Click the Library Browser tool .

The Simulink Library Browser opens.

4 In the left pane of the Simulink Library Browser, select Simulink
Verification and Validation.

The Simulink Verification and Validation library opens in the right pane of
the Simulink Library Browser. It contains one block, System Requirements.

5 Select the System Requirements block in the right pane of the Simulink
Library Browser and drag it to an empty space in the Engine diagram.

The block is automatically populated with the system requirements for the
Engine diagram, as shown.

2-51

2 Managing Model Requirements

6 Each of the listed requirements is an active link to the actual requirements
document. For example, to access the document for the second requirement
link, double-click Requirement 2.

The document requirements.doc opens in its editor, the Microsoft Word
software, scrolled to the highlighted first occurrence of the text “Secondary
Requirements,” as shown.

2-52

Displaying the System Requirements in a Diagram

Once the System Requirements block is placed in a diagram, it automatically
updates the listing as you add, modify, or delete requirements for the model
or subsystem.

Note The System Requirements block automatically lists all the system
requirements for the current model or subsystem. You cannot have more than
one System Requirements block in a diagram.

Renaming the System Requirements Block
By default, the list of the system requirements in a diagram appears under a
heading System Requirements. You can change the heading by renaming the
System Requirements block in the diagram, as follows:

1 Right-click the System Requirements block in the my_sf_car/Engine
diagram.

2 From the resulting pop-up menu, select Mask Parameters. The Block
Parameters dialog box opens, as shown.

3 Type Engine Requirements in the Block Title field and click OK.

The requirements heading in the diagram is updated as shown.

2-53

2 Managing Model Requirements

Changing Fonts for the System Requirements Block
The System Requirements block is implemented using a set of empty
subsystems. Because of this, occasionally the appearance is not refreshed
correctly, for example, when you make a change to the font style or size. You
can easily fix this problem by double-clicking the top label for the block, which
causes the entire block display to refresh.

Use the following procedure to change the font used in the block.

1 Right-click the System Requirements block in the my_sf_car/Engine
diagram.

2 From the resulting pop-up menu, select Format > Font. The Set Font
dialog box opens.

3 Under Size, select 14, then click OK. The block display partially refreshes,
as shown.

2-54

Displaying the System Requirements in a Diagram

4 To refresh the entire block display, double-click the top label, System
Requirements. The block diagram now looks as shown below.

2-55

2 Managing Model Requirements

Including Requirements with Generated Code
Once you finish simulating your model and verifying its performance against
the requirements, you might want to use it to generate code for an embedded
real-time application. The Simulink Verification and Validation software can
include the requirements that you assign to Simulink blocks in generated
code for Embedded Real-Time (ERT) targets of the Real-Time Workshop®
Embedded Coder™ software.

To specify that requirements be included in the generated code of an ERT
target, do the following:

1 Load the model.

2 From the Simulink Simulationmenu, select Configuration Parameters.

3 In the Select pane of the Configuration Parameters dialog box, select the
Real-Time Workshop node.

The currently configured system target must be an ERT target, as shown.

2-56

Including Requirements with Generated Code

�������������������	
�����
���
�����������������

4 In the Select pane, under Real-Time Workshop, select Comments.

5 In the Custom comments section on the right, select the Requirements
in block comments check box, as shown.

2-57

2 Managing Model Requirements

������������������������������
��
��������������
����
������

Requirement descriptions are included with generated code in the following
locations.

Model Element Requirement Description Location

Model In the main header file <model>.h
Nonvirtual subsystems At the call site for the subsystem
Virtual subsystems At the call site of the closest nonvirtual parent

subsystem. If a virtual subsystem has no
nonvirtual parent, requirement descriptions are
located in the main header file for the model,
<model>.h.

Nonsubsystem blocks In the generated code for the block

2-58

3

Managing Model
Requirements with DOORS
Software

The Requirements Management Interface for Telelogic DOORS software
associates DOORS requirements with model objects. To learn how to use
these applications together, see the following sections:

• “What Is the Requirements Management Interface for DOORS Software?”
on page 3-2

• “Configuring the Requirements Management Interface for DOORS
Software” on page 3-3

• “Starting the Requirements Management Interface for DOORS Software”
on page 3-6

• “Linking Objects to DOORS Requirements” on page 3-9

• “Synchronizing a DOORS Module with the Simulink Model” on page 3-14

• “Navigating Between Model Objects and DOORS Requirements” on page
3-26

3 Managing Model Requirements with DOORS® Software

What Is the Requirements Management Interface for
DOORS Software?

Telelogic DOORS software is a requirements management application that
captures, tracks, and manages user requirements. The Requirements
Management Interface (RMI) is a special interface between your Simulink
model and the DOORS software.

3-2

Configuring the Requirements Management Interface for DOORS® Software

Configuring the Requirements Management Interface for
DOORS Software

In this section...

“Before You Begin” on page 3-3
“Installing DOORS Software Before RMI” on page 3-3
“Installing DOORS Software After RMI” on page 3-3
“Upgrading DOORS Software” on page 3-4
“Manual Installation for DOORS Software” on page 3-4

Before You Begin
Telelogic DOORS software is a requirements management application for
capturing, tracking, and managing requirements. If you plan to use DOORS
software with the Requirements Management Interface (RMI), you must
install some additional files to establish communication between the DOORS
and Simulink software. The sections that follow discuss installation and
configuration procedures for a variety of situations.

Installing DOORS Software Before RMI
If DOORS software is installed before you install the RMI and run the setup
script, as described in “Configuring the Requirements Management Interface”
on page 2-3, no additional installation for your DOORS software is necessary.
The setup script automatically copies all the necessary files to the correct
location.

Installing DOORS Software After RMI
If you install DOORS software after you install the RMI, run the setup script
again, as described in “Configuring the Requirements Management Interface”
on page 2-3.

3-3

3 Managing Model Requirements with DOORS® Software

Upgrading DOORS Software
If you upgrade your DOORS software installation after installing the RMI,
run the setup script again, as described in “Configuring the Requirements
Management Interface” on page 2-3.

If you upgrade from Version 7.1 to 8.0 of the DOORS software, follow these
additional steps:

1 Navigate to the directory Telelogic\DOORS_8.0\lib\dxl\startupFiles.

2 Open the file copiedFromDoors7.dxl with a text editor.

3 Comment out the line:

#include <addins/dmi/dmi.inc>

It should now look like this:

//#include <addins/dmi/dmi.inc>

4 Save and close the file.

5 Start the DOORS and MATLAB software.

6 Run the setup script.

Manual Installation for DOORS Software
Normally, the setup script automatically copies all the files to the correct
location. However, in some cases the script might fail because of file
permissions in your DOORS software installation. If this happens, you have
to manually install additional files, as described in the following procedure:

1 Close the DOORS software if it is running.

2 Copy the following files from matlabroot\toolbox\slvnv\reqmgt to the
<doors>\lib\dxl\addins directory:

addins.idx
addins.hlp

3-4

Configuring the Requirements Management Interface for DOORS® Software

<doors> represents the top-level directory where the DOORS software is
installed. Replace any existing versions of the files if they have not been
modified; otherwise, merge their contents.

3 Copy the following files from matlabroot\toolbox\slvnv\reqmgt to the
<doors>\lib\dxl\addins\dmi directory.

dmi.hlp
dmi.idx
dmi.inc
runsim.dxl
selblk.dxl

Replace any existing versions of these files.

4 Open the file <doors>\lib\dxl\startup.dxl, and add the following
include statement in the user-defined files section:

#include <addins/dmi/dmi.inc>

3-5

3 Managing Model Requirements with DOORS® Software

Starting the Requirements Management Interface for
DOORS Software

Use this procedure to start the Requirements Management Interface for
Telelogic DOORS software. Do this prior to synchronizing the model with the
DOORS software and linking objects to DOORS requirements.

1 Start the MATLAB software on your DOS or UNIX system with the
following command:

\...\matlab.exe /automation

The MATLAB software starts up minimized with a default matlabroot\bin
path. This mode of operation is necessary to navigate between an object
mapping in the DOORS software and its source object in the Simulink
model. If this type of navigation is not needed, open your MATLAB
software in default mode.

2 Start your DOORS software.

The DOORS Database window appears.

You must have a DOORS project open in order to use the Requirements
Management Interface. If you do not have a project to open, create and open
one as follows:

3-6

Starting the Requirements Management Interface for DOORS® Software

1 Right-click the DOORS Database node in the left pane and, from the
resulting menu, select New > Project.

The New Project dialog box appears.

2 Enter the name Test Project and the description This is a test
project. and click OK.

The new project appears in the right pane of the dialog box.

3 In the right pane, double-click the project to open it. The project opens.

3-7

3 Managing Model Requirements with DOORS® Software

3-8

Linking Objects to DOORS® Requirements

Linking Objects to DOORS Requirements

In this section...

“About Linkages Between a Simulink Model and DOORS Software” on
page 3-9
“Creating a DOORS Requirement Object” on page 3-9
“Linking a Simulink or Stateflow Object to a DOORS Requirement” on
page 3-11

About Linkages Between a Simulink Model and
DOORS Software
The Requirements Management Interface for Telelogic DOORS software lets
you link from Simulink or Stateflow objects directly to DOORS requirements.
This linking mechanism is similar to selection-based linking for Microsoft
Word and Excel documents, described in “Selection-Based Linking” on page
2-22. That is, it provides two-way links by creating a special navigation object
in the DOORS software, which allows you to navigate from the DOORS
requirement to the associated object in the Simulink or Stateflow diagram.
The sections that follow describe how to link DOORS requirements to objects
in your Simulink or Stateflow diagram.

Creating a DOORS Requirement Object
Use the following procedure to create a DOORS requirement object in a
formal module.

1 In the main DOORS window, from the File menu, select New > Formal
Module to create a new formal module.

The New Formal Module dialog box appears.

3-9

3 Managing Model Requirements with DOORS® Software

2 In the Name text field, enter the name Requirements and click OK.

The new formal module Requirements appears listed in the main DOORS
window. A window for Requirements is already open, but not in focus.

3 In the main DOORS window, double-click the Requirements module to
bring it in focus.

4 In the formal module window Requirements, select Insert > Object.

A new object appears in the formal module.

��������	
����
���������
��������

5 Right-click the object in the right pane and, from the resulting context
menu, select Properties.

3-10

Linking Objects to DOORS® Requirements

6 In the resulting Object properties dialog box, enter the Heading
Transmission Requirements, some text for Object Text, and select OK.

You should now see an object similar to the following in the Requirements
formal module.

���	����������	
����
���������
��������

Linking a Simulink or Stateflow Object to a DOORS
Requirement
In “Creating a DOORS Requirement Object” on page 3-9, you created a
Transmission Requirements object in the Requirements formal module
in the DOORS software. Now use the following procedure to link the
transmission block in the sf_car model to this DOORS requirement.

1 In the MATLAB Command Window, type sf_car at the MATLAB prompt
to open the demo model sf_car.mdl.

2 In the formal module window Requirements, select the Transmission
Requirement node in the left pane.

3-11

3 Managing Model Requirements with DOORS® Software

3 In the Simulink diagram, right-click the transmission block and, from the
resulting pop-up menu, select Requirements > Add link to current
DOORS object.

The Requirements Management Interface adds the link to the DOORS
requirement object.

4 Save the DOORS module.

5 Save the Simulink model as sf_car_doors.mdl.

The Requirements Management Interface uses the DOORS absolute number
and the unique module number to identify items in the DOORS software.
This ensures that the correct item is identified even if the module is renamed
or the items in the module are rearranged.

3-12

Linking Objects to DOORS® Requirements

You can also use the Requirements dialog box to create links to DOORS
objects. Set the Document type field to DOORS Item and click Browse. The
Requirements Management Interface opens the DOORS database. Browse to
the desired module and specify the DOORS item number.

3-13

3 Managing Model Requirements with DOORS® Software

Synchronizing a DOORS Module with the Simulink Model

In this section...

“About Module Synchronization” on page 3-14
“Synchronizing a Model with the DOORS Software” on page 3-16
“Customizing the Level of Synchronization Detail” on page 3-17
“Customizing the DOORS Synchronization Settings” on page 3-22
“Linking Requirements to the DOORS Synchronized Module” on page 3-24

About Module Synchronization
The sections that follow show you how to create a synchronized module and
link objects with requirements in the Telelogic DOORS software. Keep in
mind the following synchronization rules:

• Synchronization is optional.

• You can create requirement links before or after you synchronize, in any
order.

• The synchronized module captures requirement information from the
model into the DOORS database, enabling further analysis and reporting.

The following diagram illustrates the synchronization process.

3-14

Synchronizing a DOORS® Module with the Simulink® Model

200
202
203
204
205
206
207
208

Each object in a Simulink model is
mapped to an object with a unique ID
in a DOORS formal module called the
“synchronized module.”

Enter a requirement in a DOORS format
module and link it to a uniquely mapped
object in the synchronized module. Now
you can navigate between the requirement
and its Simulink object.

1
1.1
1.1.1
1.1.2
1.1.3
1.2
1.2.1
1.3

Model
Subsystem
Block
Block
Block
Subsystem
Block
Block

Object ID Block Name

D1
D2

D3

1
1.1

1.2

Requirement Name
Requirement text ...
...
...
Requirement text ...

Object ID

DOORS Formal Module(s) with Requirements

DOORS Synchronized Modulee

Objects in a Simulink Model

Requirement

Note The Requirements Management Interface and DOORS software both
use the term object, but each uses the term differently. In the Requirements
Management Interface, and in this document, the term object refers to a
Simulink model, a Simulink block, a Stateflow block, and elements of a
Stateflow diagram. In the DOORS software, object refers to each numbered
element in the synchronized formal module for the objects in a Simulink
model. The DOORS software assigns each of these objects a unique object
identifier. In this document, these objects are referred to as DOORS objects.

3-15

3 Managing Model Requirements with DOORS® Software

Synchronizing a Model with the DOORS Software
In “Starting the Requirements Management Interface for DOORS Software”
on page 3-6, you start the MATLAB software, start the DOORS software, and
open a DOORS project. Begin the process of mapping DOORS requirements
to a Simulink model by first synchronizing the model with the open DOORS
project. Synchronization maps a hierarchical representation of a Simulink
model’s blocks and Stateflow objects to a formal module in a DOORS project.
Later, you use this formal module to add requirements.

Use the following procedure to synchronize a Simulink model with the
DOORS software:

1 In the MATLAB Command Window, type sf_car at the MATLAB prompt
to open the demo model sf_car.mdl.

2 In the Simulink model, from the View menu, selectModel Explorer.

3 Select the Synchronize Requirements with DOORS tool in the Model
Explorer window. The DOORS settings dialog box opens.

3-16

Synchronizing a DOORS® Module with the Simulink® Model

4 Click Synchronize.

Synchronizing creates and opens a DOORS formal module for the model.

Notice that by default the DOORS formal module contains only one
synchronized object, which corresponds to the top-level diagram. To include
all the model blocks in the DOORS formal module, use the following
procedure, “Customizing the Level of Synchronization Detail” on page 3-17.

Customizing the Level of Synchronization Detail
The DOORS surrogate module always contains the model objects that have
DOORS requirement links and objects that were previously synchronized.
You can choose a desired detail level to make the surrogate better reflect the
model. Additional synchronization objects improve the surrogate detail at the
expense of slower synchronization.

3-17

3 Managing Model Requirements with DOORS® Software

To include all the model blocks in the DOORS formal module, use the
following procedure.

1 Open the sf_car model.

2 From the Tools menu in the Simulink window select
Requirements > Synchronize with DOORS. The DOORS
settings dialog box opens.

Another way to access this dialog box is to select the Synchronize

Requirements with DOORS tool in the Model Explorer window.

3 From the drop-down list in the Additional synchronization objects
pane, select Complete All blocks, subsystems, states, and
transitions.

4 Click Synchronize. The DOORS formal module for the model appears.

3-18

Synchronizing a DOORS® Module with the Simulink® Model

Notice the following:

• The formal module is named sf_car in the title bar, after the model.

• The left pane displays a node for each synchronized object. All nodes are
expanded and the pane is scrolled to the bottom.

• The right pane displays a DOORS object for each model object, which
consists of the model object title only. It is also scrolled to the bottom.

• Each DOORS object has a unique identifier displayed in the ID column.
For example, the identifier for the DOORS object for the Product block
turbine in the preceding figure is 83.

• Each DOORS object has a hierarchical identifier displayed in the Block
Name column, which represents its relationship to other objects in the
engine model. The hierarchical identifier of each block begins with 1,
the hierarchical identifier for the model sf_car that contains them.

• For each DOORS object, there is a Block Type description that
identifies each object as a particular block or a subsystem.

3-19

3 Managing Model Requirements with DOORS® Software

• You can add additional information columns to the right pane with the
Insert Column tool in the DOORS toolbar.

5 In the Simulink model, right-click and drag a copy of the Scope block.

�������	�������

6 Select the Synchronize Requirements with DOORS tool again.

The synchronized module is updated with the new block.

3-20

Synchronizing a DOORS® Module with the Simulink® Model

�������	����������

Note The Requirements Management Interface does not detect model
changes made after a synchronization. It is up to you to synchronize a
changed model with the DOORS formal module.

7 In the Simulink model, delete the added Scope block and resynchronize.

The deleted block appears at the bottom of the list of objects in the formal
module and its entry in the Block Deleted column is True. If you want,
you can delete this entry by right-clicking the line and selecting Delete.
Otherwise, the module records the former presence of the deleted block.

8 Before you close the DOORS project, save the synchronized module in the
DOORS software.

3-21

3 Managing Model Requirements with DOORS® Software

Customizing the DOORS Synchronization Settings
The DOORS settings dialog box lets you control not only the level of
synchronization detail, but also the actions that the Requirements
Management Interface performs upon synchronization.

1 From the Tools menu in the Simulink window select
Requirements > Synchronize with DOORS. The DOORS
settings dialog box opens.

Another way to access this dialog box is to select the Synchronize

Requirements with DOORS tool in the Model Explorer window.

The DOORS surrogate module path field identifies the module within
the DOORS database. You can specify a module with either a relative
path (starting with ./) or a full path (starting with /). Relative paths are
appended to the current DOORS project. Absolute paths must specify a
project and a module name.

After you synchronize a model, the Requirements Management Interface
automatically updates the DOORS surrogate module path field with
the actual full path. It also saves the unique module identifier with the
module, to identify when the surrogate is renamed.

3-22

Synchronizing a DOORS® Module with the Simulink® Model

If you select a new module path, or if the surrogate module is renamed,
the Resolve Surrogate Conflict dialog box appears when you click
Synchronize.

It gives you the options to reuse the previous module, to continue with the
specified path, or to abort synchronization.

2 Use the following options in the DOORS settings dialog box to customize
your synchronization settings:

• Copy DOORS surrogate item links to Simulink objects — If this
check box is selected, at the time of synchronization the Requirements
Management Interface copies all the requirement links created from the
surrogate module items into the appropriate Simulink model objects.

• Copy Simulink DOORS links to DOORS surrogate items— If this
check box is selected, at the time of synchronization the Requirements
Management Interface copies all the requirement links created directly
from the Simulink model into the appropriate surrogate module items.

Keeping both these check boxes selected ensures that your requirement
link information is completely synchronized.

• Additional synchronization objects — Lets you select the level
of synchronization detail, as described in “Customizing the Level of
Synchronization Detail” on page 3-17.

• Save DOORS surrogate module after synchronization — If this
check box is selected, the DOORS formal modules are automatically
saved upon synchronization. If you clear the check box, you will have to
save them manually.

• Save Simulink model after synchronization (recommended) —
If this check box is selected, the Simulink model is automatically saved
upon synchronization. It is recommended that you use this option.

3-23

3 Managing Model Requirements with DOORS® Software

3 After you select the desired configuration, click Save Settings.

Linking Requirements to the DOORS Synchronized
Module
After you create or resynchronize a synchronized module, you can add
requirements for its objects in another DOORS formal module. Each
requirement is then linked to its DOORS object in the synchronized module.
This establishes recognizable requirements in the Requirements Management
Interface.

In “Creating a DOORS Requirement Object” on page 3-9, you created a
Transmission Requirements object in the Requirements formal module in
the DOORS software.

Now use the following procedure to add this requirement to the synchronized
module you created for the sf_car model in “Synchronizing a DOORS Module
with the Simulink Model” on page 3-14:

1 Open the Requirements formal module in the DOORS software.

2 In the main DOORS window, open the synchronized module sf_car and
scroll down to the transmission object.

3 Right-click the transmission object and select Link > Start Link from
the resulting context menus.

4 In the Requirements formal module window, right-click the Transmission
Requirements object and select Link > Make Link from Start from
the resulting context menus.

A link now exists between the transmission object in the synchronized
module and the Transmission Requirements object in the Requirements
module. The presence of the link is indicated by a right-facing arrow for the
transmission object in the synchronized module and a left-facing arrow in
the Transmission Requirements object in the Requirements module.

3-24

Synchronizing a DOORS® Module with the Simulink® Model

�
��
��������
�����������

The requirement you install in this section is an example of an official DOORS
requirement for the Requirements Management Interface. You can navigate
between the object in the synchronized module and its DOORS requirement by
right-clicking one of the arrows and selecting from the resulting pop-up menu.
You can also establish more links from the object to other requirements.
Later on, when you display Simulink objects with DOORS requirements in
“Navigating Between Model Objects and DOORS Requirements” on page 3-26,
these are the requirements that the Requirements Management Interface
detects.

3-25

3 Managing Model Requirements with DOORS® Software

Navigating Between Model Objects and DOORS
Requirements

In this section...

“Viewing Model Elements with Requirements” on page 3-26
“Navigating from a Simulink Model to DOORS Requirements” on page 3-28
“Navigating from a DOORS Requirements to the Simulink Model” on page
3-30

Viewing Model Elements with Requirements
It is sometimes helpful to distinguish model objects with requirements
from those without requirements in a single glance. The Requirements
Management Interface lets you see model elements with requirements linked
to the synchronized module both in the Simulink window and in the Model
Explorer.

Use the following procedure to display only those model elements with
requirements:

1 In the Simulink model, from the View menu, selectModel Explorer.

The Model Explorer window appears with the model highlighted in the
Model Hierarchy pane.

3-26

Navigating Between Model Objects and DOORS® Requirements

2 Select the Display Objects with Linked Requirements tool in the Model
Explorer toolbar.

3-27

3 Managing Model Requirements with DOORS® Software

The Model Explorer displays only the transmission object, which you
added requirements to in “Linking Objects to DOORS Requirements” on
page 3-9.

3 Select the Highlight Items with Requirements on Model tool in the
Model Explorer toolbar.

The transmission block in the Simulink model is highlighted.

Navigating from a Simulink Model to DOORS
Requirements
If you create requirement links directly from the Simulink or Stateflow object,
you can navigate directly from the object to the DOORS requirement. In
“Linking Objects to DOORS Requirements” on page 3-9, you create a link
from the transmission block in the Simulink model to the Transmission
Requirements DOORS object.

Use the following procedure to navigate from the transmission block in the
Simulink model to its associated DOORS requirement:

3-28

Navigating Between Model Objects and DOORS® Requirements

1 In the Simulink software, open the model sf_car_doors.

2 Right-click the transmission block and, from the resulting pop-up menu,
select Requirements > 1. “Transmission Requirements”.

The Requirements formal module window opens scrolled to the
Transmission Requirements link.

Navigating Through the Synchronized Module
If you use the synchronized module to create links to DOORS requirements,
as described in “Linking Requirements to the DOORS Synchronized Module”
on page 3-24, then you can navigate between Simulink objects and DOORS
requirements by using the synchronized module as an intermediary. You first
navigate to the unique object in the synchronized module from its object in
the Simulink model or the Model Explorer. From the synchronized module,
you then access requirements for each object through the linking process in
the DOORS software.

Use the following procedure to navigate from a Simulink object to the object
mapped in the synchronized module:

3-29

3 Managing Model Requirements with DOORS® Software

1 In the Simulink model, right-click a block with requirements.

A pop-up menu appears.

2 In the pop-up menu, select Requirements > DOORS Surrogate Item.

If the synchronized module is closed, it opens and the mapped object is
highlighted. If the synchronized module is already open, only the mapped
object is highlighted.

3 Access individual requirements in the synchronized module.

You can access individual requirements by right-clicking the arrows
that appear in the Block Name column for each mapped object with
requirements and making a requirement selection.

Navigating from a DOORS Requirements to the
Simulink Model
If you create two-way requirement links directly from the Simulink or
Stateflow object, you can navigate from the DOORS requirement directly
to the associated object in the Simulink or Stateflow diagram. In “Linking
Objects to DOORS Requirements” on page 3-9, you create a link from the
transmission block in the Simulink model to the Transmission Requirements
DOORS object.

Use the following procedure to navigate from the Transmission Requirements
DOORS object to the transmission block in the Simulink model:

1 In the DOORS software, open the formal module window Requirements.

2 Select the Simulink Reference sub-node of the Transmission Requirements
node in the left pane.

3-30

Navigating Between Model Objects and DOORS® Requirements

3 From the MATLAB menu in the formal module window Requirements,
select Select item.

The transmission block in the Simulink diagram is highlighted.

3-31

3 Managing Model Requirements with DOORS® Software

Navigating Through the Synchronized Module
In the DOORS software, you can navigate from a requirement in a formal
module to its mapped object in the synchronized module through the
left-facing arrows in the Block Name column for each requirement. This
brings focus to the synchronized module with the owning object selected.

You can navigate from an object in the synchronized module to its Simulink
object as follows:

1 In the DOORS synchronized module, click an object in either the left or
right pane to select it.

2 From the MATLAB menu, choose Select item.

The object opens in its native diagram as follows:

• For a Simulink object, the model window of the subsystem containing
the selected object opens with that block or subsystem selected. All
parent Simulink blocks are selected as well, so that you can reach the
object from any higher-level object.

• For a Stateflow object, the diagram containing the selected object opens
with the object highlighted.

Note Although the MATLAB menu and Select item feature appear
in all DOORS formal modules, you can use them only in a synchronized
formal module.

If the DOORS Block Deleted status for the object is True, you cannot
navigate to the object.

3-32

4

Managing Model
Verification Blocks

You use Model Verification blocks throughout your model to monitor
individual signals relative to limits that you impose on them. Use Model
Verification blocks in conjunction with the Verification Manager tool in the
Signal Builder block to carefully construct simulation tests for your model
from a single location.

• “Using Model Verification Blocks” on page 4-2

• “Using the Verification Manager” on page 4-7

• “Managing Verification Requirements” on page 4-24

4 Managing Model Verification Blocks

Using Model Verification Blocks
You use Model Verification blocks throughout your model to monitor its
signals. You can set a verification block to assert when its signal leaves the
specified limit or range. During simulation, when the signal crosses the limit,
the verification block can

• Stop simulation and bring immediate focus to that part of the model

• Report the limit encounter with a logical signal output of its own, which can
be true if the limit is not encountered and false if the limit is encountered

To see a complete list of all Model Verification blocks and references for
each, see the “Model Verification” category in the Simulink Block Reference
documentation.

In the following example, a Check Static Lower Bound verification block is
used to stop simulation when a signal from a Sine Wave block crosses its
lower bound limit:

1 Attach a Check Static Lower Bound verification block to the signal from a
Sine Wave block, as shown in the following schematic.

4-2

Using Model Verification Blocks

2 Set the model to run for 2 seconds while the Sine Wave block outputs a
signal with an amplitude of 1 and a frequency of pi radians per second.

3 Open the Check Static Lower Bound block and set the parameters as
follows:

A verification block is enabled for an assertion when the Enable assertion
check box is selected (this is the default setting). According to the preceding
property settings, the Check Static Lower Bound block is set to detect a
signal value of -0.8 or lower. If this signal is detected, simulation is stopped.

4 Run the simulation.

The model stops simulating after 1.295 seconds, when the output is -0.8,
as shown. This brings focus to the asserting verification block, which is
highlighted.

4-3

4 Managing Model Verification Blocks

The stop in simulation is also accompanied by the following status
diagnostic message.

4-4

Using Model Verification Blocks

5 You can disable the block from asserting its limit by clearing the Enable
assertion check box, which has the following effect on the block’s
appearance in the model.

4-5

4 Managing Model Verification Blocks

 ������
������	���

4-6

Using the Verification Manager

Using the Verification Manager

In this section...

“What Is the Verification Manager?” on page 4-7
“Opening the Verification Manager” on page 4-7
“Enabling and Disabling Model Verification Blocks with the Verification
Manager” on page 4-15
“Using Enabling and Disabling Tools in the Verification Manager” on page
4-20

What Is the Verification Manager?
The Verification Manager is a graphical interface that appears in the Signal
Builder dialog box. The tool allows you to manage from a central location
all the Model Verification blocks in your model. The sections that follow
describe how to access the Verification Manager for the purpose of enabling or
disabling Model Verification blocks in a Simulink model.

Opening the Verification Manager
In this topic you create a Simulink model that you use to examine the
Verification Manager in the following steps:

1 Create the following example model in the Simulink software.

4-7

4 Managing Model Verification Blocks

Typically, a Signal Builder block provides test signals for an entire model
from one location. The example model contains a Signal Builder block
feeding five test signals to Model Verification blocks. Signals 1 through 4
are sent directly to Check Static Upper Bound Model Verification blocks.
The fifth signal is sent to a subsystem that contains a Check Static Upper
Bound verification block.

Each Check Static Upper Bound verification block is set to assert for an
upper bound of 1 (property Upper bound = 1). Blocks 1, 2, 3, and 5 appear

4-8

Using the Verification Manager

crossed out because they are disabled (property Enable assert is cleared).
Block 4 is enabled (property Enable assert is checked).

2 Double-click the Signal Builder block in the preceding model to open its
Signal Builder dialog box.

4-9

4 Managing Model Verification Blocks

��
!�����������
����������"�
����
��������������

The Signal Builder dialog box displays tabbed pages for three groups of
signal values. Each group contains independent values for all five signals.

4-10

Using the Verification Manager

However, only a subset of the signals is displayed for each group. For
example, group1 displays signals 1 and 2. For more information on the
Signal Builder block, see “Working with Signal Groups” in the Simulink
documentation.

3 In the Signal Builder dialog toolbar, select the Show Verification Settings

tool .

The Verification block settings pane and the Requirements pane
appear as shown.

4-11

4 Managing Model Verification Blocks

#���������
������

�����������������

4-12

Using the Verification Manager

By default, the Verification block settings pane lists all Model
Verification blocks for the model, grouped by subsystem. The
Requirements pane lists the requirements document links for the current
signal group. See “Managing Verification Requirements” on page 4-24 for
details on adding requirement document links in the Signal Builder dialog
box. For now, delete the Requirements pane in the next step.

4 Just above the Verification block settings pane, select to close the
Requirements pane.

4-13

4 Managing Model Verification Blocks

The example Verification block settings pane displays five Model
Verification blocks. Four are in the top level of the model, and one is in a
subsystem.

4-14

Using the Verification Manager

5 Select the List Enabled Verifications tool in the Verification block
settings toolbar.

The Verification block settings pane now shows only the enabled Model
Verification blocks for the current group, as shown.

6 Select the Show Verification Block Hierarchy tool to list all Model
Verification blocks for the current group again.

Enabling and Disabling Model Verification Blocks
with the Verification Manager
In this section you use the Verification Manager to selectively enable and
disable Model Verification blocks in group tests. In “Opening the Verification
Manager” on page 4-7, you open the Verification Manager in the Signal
Builder, as shown.

4-15

4 Managing Model Verification Blocks

The Verification block settings pane in the preceding example lists
the Model Verification blocks in the model. Each verification block has a
preceding status node that indicates whether its assertion is enabled or
disabled and whether that setting applies universally or to the active group.
The preceding status node can be one of the following.

4-16

Using the Verification Manager

Node Status

Verification block is disabled for this group. Click to enable
for current group.

Verification block is enabled for the current group. Click
to disable for current group.

Verification block is enabled for all test groups.

Use the Verification Manager to enable or disable model verification blocks in
the test_signals model you created in “Opening the Verification Manager”
on page 4-7, as follows:

1 In the Verification Manager, click the empty check box next to the Check
Static Upper Bound 2 node to enable it for the current group (group1).

Enabling a disabled block in the Verification block settings pane leads
to the following change in block appearance in the model.

4-17

4 Managing Model Verification Blocks

$���	����	������	�����������������
���%������&

#���������
��'�������(�������

Because it is enabled in the current group, the Check Static Upper Bound 2
block gains an Override label and loses its cross-out. The meaning behind
the change in appearance becomes clearer when another group is selected.

2 In the Signal Builder dialog box, select the group2 tab and click the empty
check box next to the Check Static Upper Bound 3 block to enable it for
the current group (group2).

4-18

Using the Verification Manager

$���	����	������	�����������������
���%������&

#���������
��'�������(�������

The Check Static Upper Bound 3 block loses its cross to indicate that it is
enabled for the current group. However, Check Static Upper Bound 2 gains
a cross because it is enabled in another group, but not this one.

The change in appearance of the Check Static Upper Bound blocks in the
preceding steps is exemplary of the change in appearance of every other Model
Verification block except the Assertion block. The change in appearance of the
Assertion block is summarized in the following table:

4-19

4 Managing Model Verification Blocks

Assertion
Block Description

Enabled for all groups

Disabled in current group

Enabled in current group

Using Enabling and Disabling Tools in the Verification
Manager
If you have many verification blocks, it is tedious to enable and disable blocks
individually. For this reason, the Verification Manager lets you enable and
disable blocks through selections from a context menu. These selections vary
with the node as follows:

Node Context Menu Selections

• Contents enable for all groups

• Contents enable by group

• Contents group enable

• Contents group disable
• Block enable by group

• Block enable for all groups

• Block group enable
• Block enable for all groups

• Block group disable

As an example, assume that the following groups are defined in the
Verification Manager for a model with five Model Verification blocks.

4-20

Using the Verification Manager

1 Right-click the test_signals node and select Contents enable for all
groups.

Applying the Contents enable for all groups selection to the model node
enables all contained Model Verification blocks, for all test groups, in all
contained subsystems.

2 Right-click test_signals and select Contents enable by group.

Applying the Contents enable by group selection to the model node
restores the previous individually enabled/disabled settings for each block
in each group.

3 Right-click test_signals and select Contents group enable.

4-21

4 Managing Model Verification Blocks

Applying Contents group enable to the test_signals model node in
group1 individually enables all contained blocks for group1, but leaves
the other groups untouched.

4 Right-click test_signals and select Contents group disable.

Applying Contents group disable to the test_signals model node in
group1 individually disables all contained blocks for group1, but leaves
the other groups untouched.

5 Right-click Check Static Upper Bound 1 and select Block enable for
all groups.

Applying Block enable for all groups to the individual group1 block
node for Check Static Upper Bound 1 in group1 enables this block for
all groups.

6 Right-click Check Static Upper Bound 1 and select Block enable by
group.

4-22

Using the Verification Manager

Applying Block enable by group to the individual group1 block node
for Check Static Upper Bound 1 in group1 restores the previous
individually enabled/disabled state to this block for all groups. This lets
you enable or disable this node individually for each group.

7 Right-click Check Static Upper Bound 1 and select Block group
enable.

Applying Block group enable to the individual group1 block node for
Check Static Upper Bound 1 in group1 enables this block for this group
only. This is equivalent to selecting the empty check box in group1 for
this node.

8 Right-click Check Static Upper Bound 1 and select Block group
disable.

Applying Block group disable to the individual block node for Check
Static Upper Bound 1 in group1 disables this block for this group only.
This is equivalent to clearing the check box for this node.

4-23

4 Managing Model Verification Blocks

Managing Verification Requirements
In “Using the Verification Manager” on page 4-7, you learn how to use the
Verification Manager to manage Model Verification blocks along with signal
group tests in a Simulink model. The combination of test groups and their
schedules of enabled and disabled Model Verification blocks is used to verify
the correct behavior for your Simulink model. In this section you learn how to
link the requirements to this combination that specify correct behavior.

You can link requirements documents to individual verification blocks just as
you can for any Simulink block. See “Adding Requirement Links to an Object”
on page 2-7 for details on linking requirements documents to individual
Simulink blocks.

You can link requirements documents to test groups and their scheduled
Model Verification blocks through the Requirements pane of the Verification
Manager in the Signal Builder. By default, when you display the Verification
Manager in the Signal Builder window, the Requirements pane appears,
as shown.

4-24

Managing Verification Requirements

�����������������

1 Right-click anywhere in the Requirements pane.

A pop-up menu appears.

4-25

4 Managing Model Verification Blocks

2 From the pop-up menu, select Edit/Add Links.

The Requirements dialog box appears, as shown.

You can also access the Requirements dialog box for a Signal
Builder block by right-clicking it in the Simulink model and selecting
Requirements > Edit/Add Links.

3 Add links to requirements documents as described in steps 4 through 9 of
“Adding Requirement Links to an Object” on page 2-7.

The descriptions for the links that you add appear in the Requirements
pane, as shown.

4-26

Managing Verification Requirements

)�!�������������

4 Right-click a requirement link and select View to view the requirements
document in its native editor.

4-27

4 Managing Model Verification Blocks

5 Right-click a requirement link and select Delete to delete it.

4-28

5

Using Model Coverage

Model coverage helps you to validate your model tests by measuring how
thoroughly the model objects are tested. The following sections describe
Simulink Verification and Validation tools that measure and display model
coverage for the model.

• “Introduction to Model Coverage” on page 5-2

• “Using Model Coverage” on page 5-7

• “Specifying Model Coverage Reporting Options” on page 5-11

• “Understanding Model Coverage Reports” on page 5-25

• “N-Dimensional Lookup Table Report” on page 5-36

• “Signal Range Analysis Report” on page 5-43

• “Colored Simulink Diagram Coverage Display” on page 5-47

• “Using Model Coverage Commands” on page 5-52

• “Using Model Coverage Commands for Referenced Models” on page 5-59

• “Model Coverage for Embedded MATLAB Function Blocks” on page 5-64

5 Using Model Coverage

Introduction to Model Coverage

In this section...

“What Is Model Coverage?” on page 5-2
“How Model Coverage Works” on page 5-2
“Types of Model Coverage” on page 5-2
“Blocks That Receive Model Coverage” on page 5-4

What Is Model Coverage?
Model coverage determines the extent to which a model test case exercises
simulation pathways through a model. The percentage of pathways that a
test case exercises is called its model coverage. Model coverage is a measure
of how thoroughly a test tests a model. Model coverage therefore helps you
to validate your model tests.

How Model Coverage Works
Model coverage works by analyzing the execution of blocks that directly or
indirectly determine simulation pathways through your model. If a model
includes Stateflow charts, the tool also analyzes the states and transitions of
those charts. During a simulation run, the tool records the behavior of the
covered blocks, states, and transitions. At the end of the simulation, the tool
reports the extent to which the run exercised potential simulation pathways
through each covered block.

See “Understanding Model Coverage Reports” on page 5-25 for an example of
a model coverage report along with descriptions of the coverages it contains.
Before you do, you might need to review the types of coverages that model
coverage performs in “Types of Model Coverage” on page 5-2.

Types of Model Coverage
Simulink Verification and Validation software performs several types of
coverage analysis, depending on the coverage options you select.

• “Cyclomatic Complexity” on page 5-3

5-2

Introduction to Model Coverage

• “Decision Coverage (DC)” on page 5-3

• “Condition Coverage (CC)” on page 5-3

• “Modified Condition/Decision Coverage (MC/DC)” on page 5-4

• “Lookup Table Coverage (LUT)” on page 5-4

Cyclomatic Complexity
Cyclomatic complexity is a measure of the structural complexity of a model. It
approximates the McCabe complexity measure for code generated from the
model. In general, the McCabe complexity measure is slightly higher because
of error checks that the model coverage analysis does not consider.

Model coverage uses the following formula to compute the cyclomatic
complexity of an object (such as a block, chart, or state):

In this formula, N is the number of decision points that the object represents
and on is the number of outcomes for the nth decision point. The tool adds 1
to the complexity number computed by this formula for atomic subsystems
and Stateflow charts.

Decision Coverage (DC)
Decision coverage examines items that represent decision points in a model,
such as a Switch block or Stateflow states. For each item, decision coverage
determines the percentage of the total number of simulation paths through
the item that the simulation actually traversed.

Condition Coverage (CC)
Condition coverage examines blocks that output the logical combination of
their inputs (for example, the Logic block), and Stateflow transitions. A test
case achieves full coverage if it causes each input to each instance of a logic
block in the model and each condition on a transition to be true at least once

5-3

5 Using Model Coverage

during the simulation and false at least once during the simulation. Condition
coverage analysis reports for each block in the model whether the test case
fully covered the block.

Modified Condition/Decision Coverage (MC/DC)
Modified condition/decision coverage examines blocks that output the
logical combination of their inputs (for example, the Logic block), and
Stateflow transitions to determine the extent to which the test case tests
the independence of logical block inputs and transition conditions. A test
case achieves full coverage for a block if, for every input, there is a pair of
simulation times when changing that input alone causes a change in the
block’s output. A test case achieves full coverage for a transition if, for each
condition on the transition, there is at least one time when a change in the
condition triggers the transition.

Lookup Table Coverage (LUT)
Lookup table coverage examines blocks, such as the Lookup Table block,
that output the result of looking up one or more inputs in a table of inputs
and outputs, interpolating between or extrapolating from table entries as
necessary. Lookup table coverage records the frequency that table lookups use
each interpolation interval. A test case achieves full coverage if it executes
each interpolation and extrapolation interval at least once. For each lookup
table block in the model, the coverage report displays a colored map of the
lookup table that indicates where each interpolation was performed.

Note Configure lookup table coverage only at the start of a simulation. If you
tune a parameter that affects lookup table coverage at run time, the coverage
settings for the affected block are not updated.

Blocks That Receive Model Coverage
The following table lists the Simulink blocks analyzed by the tool and the
kind of coverage analysis performed for each block.

Block Decision Condition MC/DC LUT

1D Lookup •

5-4

Introduction to Model Coverage

Block Decision Condition MC/DC LUT

2D Lookup •
ND Lookup •
Interpolation Using
Prelookup •

ND Direct Lookup •
Abs •
Combin. Logic • •
Discrete-Time Integrator
(when saturation limits are
enabled)

•

Embedded MATLAB™
Function • • •

Fcn (Boolean operators only) •
For •
If •
Logic • •
MinMax •
Model • • • •
Multiport Switch •
Rate Limiter •

(Relative to
slew rates)

Relay •
Saturation •
Stateflow (see note below) • • •
Subsystem • • •
Switch •

5-5

5 Using Model Coverage

Block Decision Condition MC/DC LUT

SwitchCase •
While •

Note Model coverage provides decision coverage for Stateflow states, events,
and state temporal logic decisions. It also provides decision, condition,
and MCDC coverage for Stateflow transitions. See “Understanding Model
Coverage for Stateflow Charts” in the Stateflow documentation for details on
the model coverage of Stateflow charts.

5-6

Using Model Coverage

Using Model Coverage

In this section...

“Basic Workflow for Using Model Coverage” on page 5-7
“Creating and Running Test Cases” on page 5-7

Basic Workflow for Using Model Coverage
To develop effective tests with model coverage:

1 Develop one or more test cases for your model. (See “Creating and Running
Test Cases” on page 5-7.)

2 Run the test cases to verify that the model behavior is correct.

3 Analyze the coverage reports produced by the Simulink Verification and
Validation software.

4 Using the information in the coverage reports, modify the test cases to
increase their coverage or add new test cases that cover areas not covered
by the current set of test cases.

5 Repeat the preceding steps until you are satisfied with the coverage of
your test set.

Note The Simulink Verification and Validation software comes with an
online demonstration of the use of model coverage to validate model tests.
To run the demo, enter simcovdemo at the MATLAB prompt.

Creating and Running Test Cases
Model coverage provides two MATLAB commands, cvtest and cvsim, for
creating and running test cases. The cvtest command creates test cases that
the cvsim command runs. (See “Creating Tests with cvtest” on page 5-52 and
“Running Tests with cvsim” on page 5-54.)

You can also run the coverage tool interactively as follows:

5-7

5 Using Model Coverage

1 In the Simulink model window, select Tools > Coverage Settings.

The Coverage Settings dialog box appears.

The Coverage Settings dialog box has four tabs. The Coverage tab is
displayed by default.

2 Select Coverage for this model.

Selecting this option enables the Select Subsystem button and the check
boxes of the Coverage metrics section.

5-8

Using Model Coverage

Selecting Coverage for this model also enables fields on the other tabs of
the Coverage Settings dialog box.

3 Under Coverage metrics, select the coverages you want to appear in
the coverage report.

For a complete inventory of coverage selections in all four tabs of the
Coverage Settings dialog box, see “Specifying Model Coverage Reporting
Options” on page 5-11.

4 Select OK to close the dialog box.

5 In the Simulink model window, select Start > Simulation or click the
Start button on the Simulink toolbar to start simulating the model.

If you specify to report model coverage, the Simulink Verification
and Validation software saves coverage data for the current run

5-9

5 Using Model Coverage

in the workspace object covdata and cumulative coverage data in
covCumulativeData by default. This data appears in an HTML report that
opens in a browser window at the end of simulation.

Note You cannot run simulations with both model coverage reporting and
acceleration options enabled. The Simulink Verification and Validation
software disables model coverage reporting if an acceleration mode is
enabled.

Block reduction optimization and conditional branch input optimization
are disabled when you perform coverage analysis because they interfere
with coverage recording.

5-10

Specifying Model Coverage Reporting Options

Specifying Model Coverage Reporting Options

In this section...

“Coverage Settings Dialog Box” on page 5-11
“Coverage Tab” on page 5-12
“Results Tab” on page 5-17
“Report Tab” on page 5-18
“Options Tab” on page 5-22

Coverage Settings Dialog Box
Before starting a model coverage analysis, you need to specify model
coverage reporting options. To do this, in a Simulink model window, select
Tools > Coverage Settings. The Coverage Settings dialog box appears,
with the Coverage pane displayed.

5-11

5 Using Model Coverage

The sections that follow describe the settings for each tab of the Coverage
Settings dialog box.

Coverage Tab
Select the model coverages calculated during simulation in the Coverage
pane of the Coverage Settings dialog box.

Coverage for this model
Causes the Simulink Verification and Validation software to gather and
report the specified model coverages during simulation. When you select the
Coverage for this model option, the Select Subsystem button and the
Coverage metrics section of the Coverage pane are enabled.

5-12

Specifying Model Coverage Reporting Options

Select Subsystem
Specifies the subsystem for which the Simulink Verification and Validation
software gathers and reports coverage data. When you enable the Coverage
for this model option, the software by default generates coverage data for
the entire model.

To restrict coverage reporting to a particular subsystem:

1 In the Coverage pane of the Coverage Settings dialog box, click Select
Subsystem.

The System Selector dialog box appears.

5-13

5 Using Model Coverage

2 Select the subsystem for which you want to enable coverage reporting and
click OK.

Coverage for referenced models
Causes the Simulink Verification and Validation software to gather and
report the specified model coverages for referenced models during simulation.
Selecting the Coverage for referenced models option enables the Select
Models button and the Coverage metrics section of the Coverage pane.

5-14

Specifying Model Coverage Reporting Options

Select Models
Specifies the referenced models for which the Simulink Verification and
Validation software gathers and reports coverage data. When you enable the
Coverage for referenced models option, the software by default generates
coverage data for all referenced models.

To enable coverage reporting for particular referenced models:

1 In the Coverage pane of the Coverage Settings dialog box, click Select
Models.

The Select Models for Coverage Analysis dialog box appears.

5-15

5 Using Model Coverage

2 Select the referenced models for which you want to enable coverage
reporting and click OK.

Note The Simulink Verification and Validation software provides model
coverage support only for referenced models that operate in Normal mode.
The software cannot record coverage for Model blocks whose Simulation
mode parameter specifies Accelerator.

Coverage metrics
Select the types of test case coverage analysis that you want the tool
to perform (see “Types of Model Coverage” on page 5-2). The Simulink
Verification and Validation software gathers and reports the selected types of

5-16

Specifying Model Coverage Reporting Options

coverage for the subsystem, model, and referenced models that you specified
elsewhere on the Coverage pane.

Note To specify different types of coverage analysis for each of the referenced
models in a hierarchy, use the cv.cvtestgroup and cvsimref functions. For
more information, see “Using Model Coverage Commands for Referenced
Models” on page 5-59.

Results Tab
Select the destination of model coverage results from model coverage in the
Results pane of the Coverage Settings dialog box.

5-17

5 Using Model Coverage

Save Cumulative Results in Workspace Variable
Causes model coverage to accumulate and save the results of successive
simulations in the workspace variable specified in the cvdata object name
field. (By default, the cvdata object name is covCumulativeData.) The
coverage running total in the workspace variable is updated with new results
at the end of each simulation.

Save Last Run in Workspace Variable
Causes model coverage to save the results of the last simulation run in the
workspace variable specified in the cvdata object name field below. (By
default, the cvdata object name is covdata.)

Increment Variable Name with Each Simulation
Causes the Simulink Verification and Validation software to increment the
name of the coverage data object variable used to save the last run with each
simulation. This prevents the current simulation run from overwriting the
results of the previous run.

Update Results on Pause
When you pause during simulation the first time, causes the HTML model
coverage report to appear with model coverage results recorded up to the
pause point. When you resume simulation and later pause or stop simulation,
the model coverage report reappears in updated form with coverage results
up to the current pause or stop time.

Display Coverage Results Using Model Coloring
After simulation, causes coloring of Simulink blocks according to their level
of model coverage. Blocks highlighted in light green received full coverage
during testing. Blocks highlighted in light red received incomplete coverage.
In addition, model coverage results for each block receiving it is available in
context-sensitive form. See “Colored Simulink Diagram Coverage Display” on
page 5-47 for a complete description.

Report Tab
Select the model coverage test sessions (runs) reported by model coverage in
the Report pane of the Coverage Settings dialog box.

5-18

Specifying Model Coverage Reporting Options

Generate HTML Report
Causes the Simulink Verification and Validation software to create an HTML
report containing the coverage data. The software displays the report in the
MATLAB Help browser at the end of the simulation. Click the Settings
button to select various reporting options (see “Settings” on page 5-19).

Settings
The HTML Settings dialog box allows you to choose various model coverage
report options. To display the dialog box, click Settings on the Report pane
of the Coverage Settings dialog box. The HTML Settings dialog box appears.

5-19

5 Using Model Coverage

Include each test in the model summary. When this option is selected,
the model hierarchy table at the top of the HTML report includes columns
listing the coverage metrics for each test. When this option is not selected, the
model summary reports only the total coverage.

Produce bar graphs in the model summary. Causes the model summary
to include a bar graph for each coverage result. The bar graphs provide a
visual representation of the coverage.

Use two color bar graphs (red, blue). Causes the report to use red and
blue bar graphs instead of black and white. The color graphs might not print
well in black and white.

Display hit/count ratio in the model summary. Reports coverage
numbers as both a percentage and a ratio, e.g., 67% (8/12).

Do not report fully covered model objects. Causes the coverage report
to include only model objects that the simulation does not cover fully. This
option is useful when you are developing tests, because it reduces the size of
the generated reports.

5-20

Specifying Model Coverage Reporting Options

Include cyclomatic complexity numbers in summary. Includes the
cyclomatic complexity (see “Types of Model Coverage” on page 5-2) of the
model and its top-level subsystems and charts in the report summary. A
cyclomatic complexity number shown in boldface indicates that the analysis
considered the subsystem itself to be an object when computing its complexity.
This occurs for atomic and conditionally executed subsystems as well as
Stateflow Chart blocks.

Include cyclomatic complexity numbers in block details. Includes the
cyclomatic complexity metric in the block details section of the report.

Cumulative Runs
Display the coverage results from successive simulations in the report. For
information about this report, see “Cumulative Coverage Reports” on page
5-33

If you select the Save cumulative results in workspace variable check
box in the Results pane, a coverage running total is updated with new results
at the end of each simulation. However, if you change model or block settings
between simulations that are incompatible with settings from previous
simulations and affect the type or number of coverage points, the cumulative
coverage resets.

You can make cumulative coverage results persist between MATLAB sessions
by using cvsave to save results to a file at the end of the session and cvload
to load the results at the beginning of the session. The cvload parameter
RESTORETOTAL must be 1 in order to restore cumulative results.

When you save the coverage results to a file using cvsave and a model name
argument, the file also contains the cumulative running total. When you load
that file back into the coverage tool using cvload, you can select whether you
want to restore the running total from the file.

When you restore a running total from saved data, the saved results are
reflected in the next cumulative report that is generated. If a running
total already exists when you restore a saved value, the existing value is
overwritten.

5-21

5 Using Model Coverage

Whenever you report on more than a single simulation, the coverage displayed
for truth tables and lookup-table maps is based on the total coverage of all
the reported runs. In the case of a cumulative report, this includes all the
simulations where cumulative results were stored.

Calculating cumulative coverage results is also possible at the command line
via the + operator. The following script demonstrates this usage:

covdata1 = cvsim(test1);
covdata2 = cvsim(test2);
cvhtml('cumulative_report', covdata + covdata2);

Last Run
Display only the results of the most recent simulation run in the report.

Additional Data to Include in Report
Lets you specify names of coverage data from previous runs to include in the
current report along with the current coverage data. Each entry causes a new
set of columns to appear in the report.

Options Tab
Select important options for model coverage reports in the Options pane
of the Coverage Settings dialog box.

5-22

Specifying Model Coverage Reporting Options

Treat Simulink Logic Blocks as Short-Circuited
Applies only to condition and MC/DC coverage. If enabled, coverage analysis
treats Simulink logic blocks as though they short-circuit their input. In other
words, the coverage tool treats such a block as if the block ignores remaining
inputs when the previous inputs alone determine the block’s output. For
example, if the first input to a Logical Operator block whose Operator
parameter specifies AND is false, MC/DC coverage analysis ignores the values
of the other inputs when determining MC/DC coverage for a test case.

You should select this option if you plan to generate code from a model and
want the MC/DC coverage analysis to approximate the degree of coverage
that your test cases would achieve for the generated code (most high-level
languages short-circuit logic expressions).

5-23

5 Using Model Coverage

Note A test case that does not achieve full MC/DC coverage for
non-short-circuited logic expressions might achieve full coverage for
short-circuited expressions.

Warn When Unsupported Blocks Exist in a Model
Select this option if you want the tool to warn you at the end of the simulation
if the model contains blocks that require coverage analysis but are not
currently covered by the tool.

5-24

Understanding Model Coverage Reports

Understanding Model Coverage Reports

In this section...

“About Model Coverage Reports” on page 5-25
“Summary Report Section” on page 5-27
“Details Report Section” on page 5-28
“Decisions Analyzed Table” on page 5-30
“Conditions Analyzed Table” on page 5-31
“MC/DC Analysis Table” on page 5-31
“Cumulative Coverage Reports” on page 5-33

About Model Coverage Reports
If you enable the Generate HTML report option on the Report tab of
the Coverage Settings dialog box, the Simulink Verification and Validation
software creates a model coverage report after it completes a simulation.

If you are recording coverage for reference models, the report displays a
summary of each referenced model’s coverage results under Coverage by
Model.

Click a model name to view the coverage report for that model.

5-25

5 Using Model Coverage

Otherwise, the Simulink Verification and Validation software displays the
coverage report for a single model. The model coverage report contains several
parts, each of which is described in the sections that follow.

For an understanding of model coverage reports for Stateflow charts and
their objects, see “Understanding Model Coverage for Stateflow Charts” in
the Stateflow documentation.

5-26

Understanding Model Coverage Reports

Summary Report Section
The coverage summary section contains information about the model being
analyzed:

• Model Information:

- Model Version

- Author

- Last Saved

• Simulation Optimization Options:

- Inline Parameters

- Block Reduction

- Conditional Branch Optimization

• Coverage Options:

- Logic block short circuiting

The coverage summary has two subsections:

• Tests — The simulation start and stop time of each test case and any setup
commands that preceded the simulation. The heading for each test case
includes any test case label specified using the cvtest command.

• Summary — Summaries of the subsystem results. To see a detailed
report for a specific subsystem, click the subsystem name in the Summary
subsection.

5-27

5 Using Model Coverage

Details Report Section
The Details section reports the model coverage results in detail.

5-28

Understanding Model Coverage Reports

The Details section contains a summary of results for the model as a
whole, followed by a list of subsystems and charts that the model contains.
Subsections on each subsystem and chart follow. Click the name of a
subsystem or chart in the model summary to see a detailed report.

5-29

5 Using Model Coverage

Each subsystem section contains a summary of the test coverage results
for the subsystem and a list of the subsystems it contains. The overview is
followed by block reports, one for each block that contains a decision point
in the subsystem.

Each section of the detailed report summarizes the results for the metrics
used to test the object (model, subsystem, chart, or block) to which the section
applies. The sections for models and subsystems list results for the model
and subsystem considered as a covered object and for the contents of the
model or subsystem.

You can also access an individual object’s subsection of the Details section
from the Simulink model as follows:

1 Right-click a Simulink block.

A pop-up menu appears.

2 In the pop-up menu, select Coverage > Report.

The model coverage report appears, scrolled to the applicable Details
subsection.

Decisions Analyzed Table
The Decisions analyzed table lists possible outcomes for a decision and the
number of times that an outcome occurred in each test simulation.

The table highlights outcomes that did not occur in red. To display and
highlight the block in question, click the block name associated with the
Decisions analyzed table, as in this example from the fuelsys model.

5-30

Understanding Model Coverage Reports

Conditions Analyzed Table
The Conditions analyzed table lists the number of occurrences of true and
false conditions on each input port of the corresponding block.

MC/DC Analysis Table
The MC/DC analysis table lists the MC/DC input condition cases represented
by the corresponding block and the extent to which the reported test cases
cover the condition cases.

5-31

5 Using Model Coverage

Each row of the MC/DC analysis table represents a condition case for a
particular input to the block. A condition case for input n of a block is a
combination of input values such that changing the value of input n alone
is sufficient to change the value of the block’s output. Input n is called the
deciding input of the condition case.

The table uses a condition case expression to represent a condition case. A
condition case expression is a character string where:

• The position of a character in the string corresponds to the input port
number.

• The character at the position represents the value of the input (T means
true, F means false).

• A boldface character corresponds to the value of the deciding input.

For example, FTF represents a condition case for a three-input block where
the second input is the deciding input.

The Decision/Condition column specifies the deciding input for an input
condition case. The #1 True Out column specifies the deciding input value
that causes the block to output a true value for a condition case. The #1 True
Out entry uses a condition case expression, for example, FF, to express the
values of all the inputs to the block, with the value of the deciding variable
indicated by boldfacing.

Parentheses around the expression indicate that the specified combination of
inputs did not occur during the first (or only) test case included in this report.
In other words, the test case did not cover the corresponding condition case.
The #1 False Out column specifies the deciding input value that causes the

5-32

Understanding Model Coverage Reports

block to output a false value and whether the value actually occurred during
the first (or only) test case included in the report.

If you select Treat Simulink Logic blocks as short-circuited in the
Coverage Settings dialog box (see “Specifying Model Coverage Reporting
Options” on page 5-11), MC/DC coverage analysis does not check whether
short-circuited inputs actually occur. The MC/DC details table uses an x in
a condition expression (e.g., TFxxx) to indicate short-circuited inputs that
were not analyzed by the tool.

Navigation Arrows. The section for each block contains a backward and
a forward arrow. Click the forward arrow to go to the next section in the
report that lists an uncovered outcome. Click the back arrow to return to the
previous uncovered outcome in the report.

Cumulative Coverage Reports
To identify untested blocks, states, or transitions, you simulate a series of test
cases on your model to maximize the coverage of your model. If you select
Save cumulative results in workspace variable in the Results pane
and Cumulative runs in the Report pane, the results of each simulation
are saved and recorded in the report.

In a cumulative coverage report, the right-most results in all tables reflect
that running total value. The report is organized so that you can easily
compare the additional coverage from the most recent run with the coverage
from all prior runs in the session.

A cumulative coverage report contains information about:

• Current Run — The coverage results of the simulation just completed

• Delta — Percentage of additional coverage achieved with the simulation
just completed

• Cumulative — The total coverage of the model up to but not including
the simulation not completed

The Summary report after running three test cases for the
slvnv_autopilot_test_harness model shows how much additional coverage

5-33

5 Using Model Coverage

the third test case achieved and the cumulative coverage achieved for the
first two test cases.

The Decisions analyzed table for cumulative coverage contains three columns
of data about decision outcomes that represent the current run, the delta
since the last run, and the cumulative data. respectively.

The Conditions analyzed table uses column headers #n T and #n Fto indicate
results for individual test cases, and Tot T and Tot F for the cumulative
results. You can identify the true and false conditions on each input port of
the corresponding block for each test case.

5-34

Understanding Model Coverage Reports

The MC/DC analysis #n True Out and #n False Out columns show the
condition cases for each test case. The Total Out T and Total Out F column
show the cumulative results.

5-35

5 Using Model Coverage

N-Dimensional Lookup Table Report
This report section displays an interactive chart that summarizes the extent
to which elements of a lookup table are accessed. In the following example, a
Lookup Table (n-D) block of 10-by-10 elements filled with random values is
accessed with x and y indices generated from two Sine Wave blocks.

In this example, table indices are 1, 2,..., 10 in each direction. The Sine Wave
2 block is out of phase with the Sine Wave 1 block by pi/2 radians. This
generates x and y numbers for the edge of a circle, which becomes apparent
when you examine the resulting Lookup Table coverage.

5-36

N-Dimensional Lookup Table Report

The report contains a two-dimensional table representing the elements of the
lookup table. The element indices are represented by the cell border grid
lines, which number 10 in each dimension. Areas where the lookup table
interpolates between table values are represented by the cell areas. Areas
of extrapolation left of element 1 and right of element 10 are represented by
cells at the edge of the table, which have no outside border.

The number of values interpolated (or extrapolated) for each cell (execution
counts) during testing is represented by a shade of green assigned to the cell.
Each of six levels of shading and the range of execution counts represented
are displayed on the side of the table.

5-37

5 Using Model Coverage

If you click an individual table cell, you receive a dialog that displays the
index location of the cell and the exact number of execution counts generated
for it during testing. The following example shows the contents of a color
shaded cell on the right edge of the circle:

The selected cell is outlined in red. You can also click the extrapolation cells
on the edge of the table.

A bold grid line indicates that at least one block input equal to its exact index
value occurred during the simulation. Click the border to display the exact
number of hits for that index value.

5-38

N-Dimensional Lookup Table Report

The following example model uses a Lookup Table (n-D) block of 10-by-10-by-5
elements filled with random values.

Both the x and y table axes have the indices 1, 2,..., 10, while the z axis has
the indices 10, 20,..., 50. Lookup table values are accessed with x and y indices
generated from the two Sine Wave blocks in the preceding example, and a z
index generated from a Ramp block.

After simulation, the following lookup table report appears.

5-39

5 Using Model Coverage

Instead of a two-dimensional table, the link Force Map Generation appears,
which displays the following tables:

5-40

N-Dimensional Lookup Table Report

Notice that lookup table coverage for a three-dimensional lookup table block
is reported as a set of two-dimensional tables. If you overlay these tables last
on top of first, you notice that the coverage values corkscrew up to the reader.

The vertical bars represent the exact z index values: 10, 20, 30, 40, 50. If a
vertical bar is bold, this indicates that at least one block input was equal to

5-41

5 Using Model Coverage

the exact index value it represents during the simulation. Click a bar to get a
report of coverage for the exact index value it represents.

You can report lookup table coverage for lookup tables of any dimension.
Coverage for four-dimensional tables is reported as sets of three-dimensional
sets like those in the preceding example. Five-dimensional tables are reported
as sets of sets of three-dimensional sets, and so on.

5-42

Signal Range Analysis Report

Signal Range Analysis Report
If you select Signal Range Coverage in the Coverage Settings dialog
box, you receive a Signal Range Analysis report at the bottom of the model
coverage report. This report gives you the maximum and minimum signal
values at each block in the model measured during simulation.

Note When Inline parameters is enabled, some signal range information
may be missing (for example, if there is a gain with a value of 1). To get
a complete signal range report, clear the Inline parameters option on the
Optimization pane of the model’s active configuration set.

You can access the Signal Range Analysis report quickly with the Signal
Ranges link in the nonscrolling region at the top of the model coverage
report, as shown for the fuelsys model.

5-43

5 Using Model Coverage

Each block is reported in hierarchical fashion: child blocks are displayed
directly under parent blocks. Each block name in the signal report is a link
that brings the block into immediate focus. For example, selecting the link
EGO sensor displays this block highlighted in its native diagram, as shown.

5-44

Signal Range Analysis Report

Selecting the link Switch displays this block in its own subsystem by looking
under the mask for EGO sensor, as shown.

5-45

5 Using Model Coverage

5-46

Colored Simulink® Diagram Coverage Display

Colored Simulink Diagram Coverage Display

In this section...

“How Model Coverage Highlighting Works” on page 5-47
“Enabling the Colored Diagram Display” on page 5-47
“Displaying Model Coverage with Model Coloring” on page 5-48
“Accessing Coverage Information for Colored Blocks” on page 5-50

How Model Coverage Highlighting Works
The Simulink Verification and Validation software displays model coverage
results for individual blocks directly in Simulink diagrams. If you enable
model coverage, the tool does the following:

• Highlights (colors) blocks that have received model coverage during
simulation

• Provides a context-sensitive display of summary model coverage
information for each block

Coloring is used to highlight structural coverage in Simulink models. When
you enable coloring for model coverage results (see “Enabling the Colored
Diagram Display” on page 5-47), the tool highlights blocks that received the
following types of model coverage:

• “Decision Coverage (DC)” on page 5-3

• “Condition Coverage (CC)” on page 5-3

• “Modified Condition/Decision Coverage (MC/DC)” on page 5-4

Enabling the Colored Diagram Display
You enable the model coverage colored diagram display as follows:

1 In the Simulink window, from the Tools menu, select Coverage Settings.

The Coverage Settings dialog box appears.

5-47

5 Using Model Coverage

2 In the Coverage tab of the Coverage Settings dialog box, select Coverage
for this model.

3 Select the Results tab, as shown.

The Display coverage results using model coloring option is selected
by default for all models. This check box becomes visible only after
Coverage for this model is enabled in the Coverage tab. You can
disable this option for the current session by clearing this check box.

Displaying Model Coverage with Model Coloring
You enable display coverage as described in “Enabling the Colored Diagram
Display” on page 5-47, After you enable this display, any time that the model
generates a model coverage report, individual blocks receiving coverage are
highlighted with light green or light red.

5-48

Colored Simulink® Diagram Coverage Display

The light green Manual Switch blocks received full coverage during testing.
The light red blocks (the engine speed Manual Switch block, and the
fuel rate controller and engine gas dynamics subsystems) received
incomplete coverage during testing. Blocks with no color highlighting
(the Constant blocks, Scope blocks, and the throttle command Repeating
Sequence block) received no coverage at all.

5-49

5 Using Model Coverage

Note To restore the Simulink diagram to its original colors, right-click a
colored block and select Coverage from the resulting context menu followed
by Remove information from the resulting submenu. Alternatively, you
can select Remove Highlighting from the Simulink View menu or the
diagram’s context menu to remove model coloring.

Accessing Coverage Information for Colored Blocks
“Displaying Model Coverage with Model Coloring” on page 5-48 describes
the highlighted Simulink diagram that appears after simulation when you
enable display coverage with model coloring in the coverage settings for the
model. Along with the highlighted Simulink diagram, a Coverage Display
window appears, as shown.

If you click a colored block in the Simulink model, its summarized coverage
appears in the Coverage Display window. In the preceding example, the
following summary report appears when you click the fuel rate controller
subsystem:

Summary coverage information appears in the Coverage Display window for
the block, whose hyperlinked name appears at the top of the window. Click
the hyperlink to access the appropriate section of the coverage report for this

5-50

Colored Simulink® Diagram Coverage Display

block. You can also see this section of the report by right-clicking the block
and selecting Coverage > Report.

You can set the Coverage Display window to display coverage for a block in
response to a hovering mouse cursor instead of a mouse click in one of two
ways:

• Select the down arrow on the right side of the Coverage Display window,
and, from the resulting menu, select Focus.

• Right-click a colored block and select Coverage from the resulting context
menu followed by Display details on mouse-over from the resulting
submenu.

Tip You can adjust the font size that the Coverage Display window uses. To
increase the font size, press the Ctrl+ keys; to decrease the font size, press
the Ctrl- keys.

5-51

5 Using Model Coverage

Using Model Coverage Commands

In this section...

“About Model Coverage Commands” on page 5-52
“Creating Tests with cvtest” on page 5-52
“Running Tests with cvsim” on page 5-54
“Producing HTML Reports with cvhtml” on page 5-55
“Saving Test Runs to a File with cvsave” on page 5-56
“Loading Stored Coverage Test Results with cvload” on page 5-56
“Coverage Script Example” on page 5-57

About Model Coverage Commands
Using model coverage commands lets you automate the entire model coverage
process with MATLAB scripts. You can use model coverage commands to set
up model coverage tests, execute them in simulation, store the results, and
report them. For a list of the model coverage commands that the Simulink
Verification and Validation software provides, see Chapter 7, “Function
Reference”.

The sections that follow describe a workflow for using model coverage
commands to create, run, store, and report model coverage tests.

Creating Tests with cvtest
The cvtest command creates a test specification object. Once you create the
object, you simulate it with the cvsim command.

The call to cvtest has the following default syntax:

cvto = cvtest(root)

root is the name of, or a handle to, a Simulink model or a subsystem of
a model. cvto is a handle to the resulting test specification object. Only
the specified model or subsystem and its descendants are subject to model
coverage testing.

5-52

Using Model Coverage Commands

The following command creates a test object with a specified label used for
reporting results:

cvto = cvtest(root, label)

The following command creates a test with a setup command:

cvto = cvtest(root, label, setupcmd)

The setup command is executed in the base MATLAB workspace just prior
to running the instrumented simulation. This command is useful for loading
data prior to a test.

The returned cvtest object, cvto, has the following structure.

Field Description

id Read-only internal data-dictionary
ID

modelcov Read-only internal data-dictionary
ID

rootPath Name of the system or subsystem
instrumented for analysis

label String used when reporting results
setupCmd Command executed in the base

workspace just prior to simulation.
settings.condition Set to 1 if condition coverage is

desired
settings.decision Set to 1 if decision coverage is

desired
settings.mcdc Set to 1 if MC/DC coverage is desired
settings.sigrange Set to 1 if signal range coverage is

desired
settings.tableExec Set to 1 if lookup table coverage is

desired

5-53

5 Using Model Coverage

Field Description

modelRefSettings.enable String specifying one of the following
values:

• Off — Disables coverage for all
referenced models

• all — Enables coverage for all
referenced models

• filtered — Enables coverage
only for referenced models not
listed in the excludedModels
subfield

modelRefSettings.exclude-
TopModel

Set to 1 if excluding coverage for the
top model is desired

modelRefSettings.excluded-
Models

String specifying a comma-separated
list of referenced models for
which coverage is disabled when
modelRefSettings.enable specifies
filtered

Running Tests with cvsim
Once you create a test specification object, you simulate it with the cvsim
command.

Note You do not have to enable model coverage reporting for the model (see
“Creating and Running Test Cases” on page 5-7) to use the cvsim command.

The call to cvsim has the following default syntax:

cvdo = cvsim(cvto)

This command executes the cvtest object cvto by starting a simulation run
for the corresponding model. The results are returned in the cvdata object

5-54

Using Model Coverage Commands

cvdo. But when recording coverage for multiple models in a hierarchy, cvsim
returns its results in a cv.cvdatagroup object.

You can also control the simulation in a cvsim command by using parameters
for the Simulink sim command, as shown in the following examples:

• The following command returns the simulation time vector t, matrix of
state values x, and matrix of output values y.

[cvdo,t,x,y] = cvsim(cvto)

• The following command overrides default simulation values with new
values.

[cvdo,t,x,y] = cvsim(cvto, timespan, options)

See documentation for the Simulink sim command for descriptions of the
parameters t, x, y, timespan, and options in the previous examples.

You can execute multiple test objects with the cvsim command. The following
command executes a set of coverage test objects, cvto1, cvto2, ... and
returns the results in a set of cvdata objects, cvdo1, cvdo2,

[cvdo1, cvdo2, ...] = cvsim(cvto1, cvto2, ...)

You can also use the cvsim command to create and execute a cvtest object in
one command as shown in the following example:

[cvdo,t,x,y] = cvsim(cvto, label, setupcmd)

Producing HTML Reports with cvhtml
Once you run a test in simulation with cvsim, you produce results that are
saved to cv.cvdatagroup or cvdata objects in the base MATLAB workspace.
Use the cvhtml command to produce an HTML report of these objects.

The following command creates an HTML report of the coverage results in the
cvdata object cvdo, which is written to the file file in the current MATLAB
directory:

cvhtml(file, cvdo)

5-55

5 Using Model Coverage

The following example creates a combined report of several cvdata objects:

cvhtml(file, cvdo1, cvdo2, ...)

The results from each object are displayed in a separate column of the HTML
report. Each cvdata object must correspond to the same root model or
subsystem, or the function produces errors.

You can specify the detail level of the report with the value of detail, an
integer between 0 and 3, as shown in the following example:

cvhtml(file, cvdo1, cvdo2,..., detail)

Greater numbers for detail indicate greater detail. The default value is 2.

Saving Test Runs to a File with cvsave
Once you run a test with cvsim, save its coverage tests and results to a file
with the function cvsave:

cvsave(filename, model)

Save all the tests and results related to model in the text file filename.cvt:

cvsave(filename, cvto1, cvto2, ...)

Save the specified tests in the text file filename.cvt. Information about
the referenced models is also saved.

You can also save specified cvdata objects to file. The following example saves
the tests, test results, and referenced models’ structure in cvdata objects to
the text file filename.cvt:

cvsave(filename, cvdo1, cvdo2, ...)

Loading Stored Coverage Test Results with cvload
The cvload command loads into memory the coverage tests and results stored
in a file by the cvsave command. The following example loads the tests and
data stored in the text file filename.cvt:

[cvtos, cvdos] = cvload(filename)

5-56

Using Model Coverage Commands

The cvtest objects that are successfully loaded are returned in cvtos, a cell
array of cvtest objects. The cvdata objects that are successfully loaded are
returned in cvdos, a cell array of cvdata objects. cvdos has the same size as
cvtos, but can contain empty elements if a particular test has no results.

In the following example, if restoretotal is 1, the cumulative results from
prior runs are restored:

[cvtos, cvdos] = cvload(filename, restoretotal)

If restoretotal is unspecified or 0, the model’s cumulative results are
cleared.

cvload Special Considerations
The following are some special considerations for using the cvload command:

• If a model with the same name exists in the coverage database, only the
compatible results are loaded from the file and they reference the existing
model to prevent duplication.

• If the Simulink models referenced in the file are open but do not exist in
the coverage database, the coverage tool resolves the links to the models
that are already open.

• When you are loading several files that reference the same model, only the
results that are consistent with the earlier files are loaded.

Coverage Script Example
The following example is a portion of simcovdemo2.m, located in the coverage
root folder. This example demonstrates common model coverage commands.

mdl = 'slvnvdemo_ratelim_harness';

testObj1 = cvtest([mdl, '/Adjustable Rate Limiter']);
testObj1.label = 'Gain within slew limits';
testObj1.setupCmd = 'load(''within_lim.mat'');';
testObj1.settings.mcdc = 1;

testObj2 = cvtest([mdl, '/Adjustable Rate Limiter']);
testObj2.label='Rising gain that temporarily exceeds slew limit';

5-57

5 Using Model Coverage

testObj2.setupCmd = 'load(''rising_gain.mat'');';
testObj2.settings.mcdc = 1;

[dataObj1,T,X,Y] = cvsim(testObj1,[0 2]);
[dataObj2,T,X,Y] = cvsim(testObj2,[0 2]);

cvhtml('ratelim_report',dataObj1,dataObj2);
cumulative = dataObj1+dataObj2;
cvsave('ratelim_testdata',cumulative);

In this example, you create two cvtest objects, testObj1 and testObj2,
and simulate them according to their specifications. Each cvtest object
uses the setupCmd property to load a data file before simulation. Decision
coverage is enabled by default, and MC/DC coverage is enabled as well. After
simulation, you use cvhtml to display the coverage results for two tests and
the cumulative coverage. Lastly, you compute cumulative coverage with the
+ operator and save the results. For another detailed example of how to use
the model coverage commands, enter simcovdemo at the MATLAB command
prompt.

5-58

Using Model Coverage Commands for Referenced Models

Using Model Coverage Commands for Referenced Models

In this section...

“Introduction” on page 5-59
“Creating a Test Group with cv.cvtestgroup” on page 5-62
“Running Tests with cvsimref” on page 5-62
“Extracting Results from cv.cvdatagroup” on page 5-63

Introduction
The Simulink software allows you to include one model in another by using
Model blocks. Each Model block represents a reference to another model,
called a referenced model or submodel. A referenced model itself can contain
Model blocks that reference other models. You can construct a hierarchy of
referenced models, in which the topmost model is called the top model. See
“Referencing a Model” in Simulink User’s Guide for more information.

Model coverage supports referenced models that operate in Normal mode.
That is, you can record coverage only for those Model blocks whose
Simulation mode parameter specifies Normal. You can use model coverage
commands to record coverage for referenced models (see “Using Model
Coverage Commands” on page 5-52). However, if you want to record different
types of coverage for models in a hierarchy, you must use the cvsimref
function. The following steps describe a basic workflow for using this function
to obtain model coverage results for Model blocks:

Step Description See...

1 Use cv.cvtestgroup to group
together test specification objects
that correspond to each model in
a hierarchy.

“Creating a Test Group with
cv.cvtestgroup” on page 5-62

5-59

5 Using Model Coverage

Step Description See...

2 Use cvsimref to simulate the top
model in a hierarchy and record
coverage results for its referenced
models.

“Running Tests with cvsimref” on
page 5-62

3 Use cv.cvdatagroup to extract
the coverage data objects that
correspond to each model in a
hierarchy.

“Extracting Results from
cv.cvdatagroup” on page 5-63

The next sections illustrate how to complete each of these steps using the
following model hierarchy:

5-60

Using Model Coverage Commands for Referenced Models

	�������
����������
���������

���������
����������
���������

5-61

5 Using Model Coverage

Creating a Test Group with cv.cvtestgroup
The cvtest command creates a test specification object for a Simulink model
(see “Creating Tests with cvtest” on page 5-52). But if your model references
other models, you might use a different test specification object for each model
in the hierarchy. In this case, the cv.cvtestgroup object allows you to group
together multiple test specification objects. After you create a group of test
specification objects, you simulate it using the cvsimref function.

For example, suppose that you create a different test specification object for
each of the models in your hierarchy:

cvto1 = cvtest('TopModel')
cvto2 = cvtest('SubModel1')
cvto3 = cvtest('SubModel2')

The following command creates a test group object named cvtg, which
contains all the cvtest objects associated with your model hierarchy:

cvtg = cv.cvtestgroup(cvto1, cvto2, cvto3)

A cv.cvtestgroup object provides methods, such as add and get, which allow
you to customize its contents to meet your needs. For more information, see
the documentation for the cv.cvtestgroup function.

Running Tests with cvsimref
Once you create a test group object, you simulate it with the cvsimref
function.

Note You must use the cvsimref function to record coverage for referenced
models in a hierarchy.

The call to cvsimref has the following default syntax:

cvdg = cvsimref(topModelName, cvtg)

This command executes the test group object cvtg by simulating the top
model in the corresponding model hierarchy, topModelName. It returns the
coverage results in a cv.cvdatagroup object named cvdg.

5-62

Using Model Coverage Commands for Referenced Models

Like the cvsim function, you can use parameters from the Simulink sim
function in a cvsimref command to control the simulation, as shown in the
following examples:

• The following command returns the simulation time vector t, matrix of
state values x, and matrix of output values y:

[cvdg,t,x,y] = cvsimref(topModelName, cvtg)

• The following command overrides default simulation values with new
values:

[cvdg,t,x,y] = cvsimref(topModelName, cvtg, timespan, options)

For descriptions of the parameters t, x, y, timespan, and options, see the
documentation for the sim function in the Simulink Reference.

Extracting Results from cv.cvdatagroup
Once you simulate a test group with cvsimref, the function returns results
that reside in a cv.cvdatagroup object. The data group object contains
multiple cvdata objects, each of which corresponds to coverage results for a
particular model in the hierarchy.

A cv.cvdatagroup object provides methods, such as allNames and get,
which allow you to extract individual cvdata objects. For example, enter the
following command to obtain a cell array that lists all model names associated
with the data group cvdg:

modelNames = cvdg.allNames

To extract the cvdata objects that correspond to the particular models, enter

cvdo1 = cvdg.get('TopModel')
cvdo2 = cvdg.get('SubModel1')
cvdo3 = cvdg.get('SubModel2')

After you extract the individual cvdata objects, you can use other model
coverage commands to operate on the coverage data of a particular model. For
example, you can use the cvhtml function to create and display an HTML
report of the coverage results (see “Producing HTML Reports with cvhtml”
on page 5-55).

5-63

5 Using Model Coverage

Model Coverage for Embedded MATLAB Function Blocks

In this section...

“Types of Model Coverage in Embedded MATLAB Function Blocks” on
page 5-64
“Creating a Model with Embedded MATLAB Function Block Decisions”
on page 5-65
“Understanding Embedded MATLAB Function Block Model Coverage”
on page 5-69

Types of Model Coverage in Embedded MATLAB
Function Blocks
This section describes the model coverage that an Embedded MATLAB
Function block receives.

Note Model coverage is available to you only if you have a Simulink
Verification and Validation software license.

During simulation, the following Embedded MATLAB Function block function
statements are tested for decision coverage:

• Function header — Decision coverage is 100% if the function or subfunction
is executed.

• if — Decision coverage is 100% if the if expression evaluates to true at
least once, and false at least once.

• switch — Decision coverage is 100% if every switch case is taken,
including the fall-through case.

• for— Decision coverage is 100% if the equivalent loop condition evaluates
to true at least once, and false at least once.

• while — Decision coverage is 100% if the equivalent loop condition
evaluates to true at least once, and false at least once.

5-64

Model Coverage for Embedded MATLAB™ Function Blocks

During simulation, the following logical conditions are tested for condition
coverage and MCDC coverage in the Embedded MATLAB Function block
function:

• if statement conditions

• while statement conditions, if present

Creating a Model with Embedded MATLAB Function
Block Decisions
In this topic you use an example model to examine model coverage of an
Embedded MATLAB Function block. The following model contains a single
Embedded MATLAB Function block with output data sent to a Scope block.

Double-click the Embedded MATLAB Function block to specify its program
content as shown.

5-65

5 Using Model Coverage

*�����
�

��	������
�

$�����
��

$�����
�

5-66

Model Coverage for Embedded MATLAB™ Function Blocks

The run_intersect_test Embedded MATLAB Function block contains two
functions. The top-level function, run_intersect_test, sends the coordinates
for two rectangles, one fixed and the other moving, as arguments to the
subfunction rect_intersect, which tests for intersection between the two.
The origin of the moving rectangle increases by 1 in the x and y directions
with each time step.

The coordinates for the origin of the moving test rectangle are represented
by persistent data x1 and y1, which are both initialized to -1. For the first
sample, x1 and y1 are both incremented to 0. From then on, the progression
of rectangle arguments during simulation is as follows:

5-67

5 Using Model Coverage

The fixed rectangle is shown in bold with a lower left origin of (2,4) and a
width and height of 2. At time t = 0, the first test rectangle has an origin of
(0,0) and a width and height of 2. For each succeeding sample, the origin of
the test rectangle is incremented by (1,1). The rectangles at sample times
t = 2, 3, and 4 intersect with the test rectangle.

The subfunction rect_intersect checks to see if its two rectangle arguments
intersect. Each argument consists of coordinates for the lower left corner of
the rectangle (origin), and its width and height. x values for the left and right
sides and y values for the top and bottom are calculated for each rectangle and

5-68

Model Coverage for Embedded MATLAB™ Function Blocks

compared in nested if-else decisions. The function returns a logical value of
1 if the rectangles intersect and 0 if they do not.

Scope output during simulation, which plots the return value against the
sample time, confirms the intersecting rectangles for sample 2, 3, and 4 as
shown.

Understanding Embedded MATLAB Function Block
Model Coverage
Model coverage reports are generated automatically after a simulation if
you specify them. See “Creating and Running Test Cases” on page 5-7 for
instructions on how to specify a model coverage report.

When simulation is finished, the model coverage report appears in a browser
window. After the summary for the model, the Details section of the model
coverage report reports on each of the parts of the model. Model coverage
for the parts of the example model in “Creating a Model with Embedded
MATLAB Function Block Decisions” on page 5-65 appears in the following
model-block-function order.

5-69

5 Using Model Coverage

Model: intersecting_rectangles

Block: Embedded MATLAB Function

Function: run_intersect_test

1: function out = rect_intersect_test

6: if isempty(x1)

14: function out = rect_intersect(rect1,
rect2)

27: if (top1 < bottom2 || top2 < bottom1)

Decision Lines:

30: if (right1 < left2 || right2 < left1)

The following subtopics examine the model coverage report for the example
model in reverse function-block-model order. Reversing the order helps you
make sense of the summary information that appears at the top of each
section.

Model Coverage for the Embedded MATLAB Function Block
Function run_intersect_test
Model coverage for the Embedded MATLAB Function block function
run_intersect_test is reported under the linked name of the function.
Clicking this link opens the function in the Embedded MATLAB Editor.
Following the linked function name is a link to the model coverage report for
the parent Embedded MATLAB Function block of run_intersect_test.

5-70

Model Coverage for Embedded MATLAB™ Function Blocks

The top half of the report for the function summarizes its model coverage
results as shown. The coverage metrics for run_intersect_test include
decision, condition, and MCDC coverage. These metrics are best understood
by examining the code listing for run_intersect_test that follows.

5-71

5 Using Model Coverage

Lines with coverage elements are marked by a highlighted line number in the
listing. Line 1 receives decision coverage on whether the top-level function
run_intersect_test is executed. Line 6 receives decision coverage for its
if statement. Line 14 receives decision coverage on whether the subfunction

5-72

Model Coverage for Embedded MATLAB™ Function Blocks

rect_intersect is executed. Lines 27 and 30 receive decision, condition, and
MCDC coverage for their if statements and conditions. Each of these lines
is the subject of a report that follows the listing.

Notice that the condition right1 < left2 in line 30 is highlighted in red.
This means that this condition was not tested for all of its possible outcomes
during simulation. Exactly which of the outcomes was not tested is answered
by the report for the decision in line 30.

The following subtopics display the coverage for each decision line of
run_intersect_test. The coverage for each line is titled with the line itself,
which is linked to display the function with the line highlighted.

Coverage for Line 1. The coverage metrics for line 1 appear below the
listing for the function run_intersect_test.

The first line of every function receives coverage analysis indicative
of the decision to run the function in response to a call. Coverage for
run_intersect_test indicates that it executed during testing.

Coverage for Line 6. The coverage metrics for line 6 appear below the
coverage metrics for line 1.

5-73

5 Using Model Coverage

The Decisions analyzed table indicates that the decision in line 6, if
isempty(x1), executed a total of eight times. The first time it executed,
the decision evaluated to true, enabling run_intersect_test to initialize
the values of its persistent data. The remaining seven times the decision
executed, it evaluated to false. Because both possible outcomes occurred,
decision coverage is 100%.

Coverage for Line 14. The coverage metrics for line 14 appear below the
coverage metrics for line 6.

5-74

Model Coverage for Embedded MATLAB™ Function Blocks

This table indicates that the subfunction rect_intersect executed during
testing.

Coverage for Line 27. Coverage metrics for line 27 appear below the
coverage metrics for line 14.

The Decisions analyzed table indicates that there are two possible outcomes
for the decision in line 27: true and false. Five of the eight times it was
executed, the decision evaluated to false, and the remaining three times, it

5-75

5 Using Model Coverage

evaluated to true. Because both possible outcomes occurred, decision coverage
is 100%.

The Conditions analyzed table sheds some additional light on the decision
in line 27. Because this decision consists of two conditions linked by a logical
OR (||) operation, only one condition must evaluate true for the decision to be
true. If the first condition evaluates to true, there is no need to evaluate the
second condition. The first condition, top1 < bottom2, was evaluated eight
times, and was true twice. This means that it was necessary to evaluate the
second condition only six times. In only one case was it true, which brings the
total true occurrences for the decision to three, as reported in the Decisions
analyzed table.

MCDC coverage looks for decision reversals that occur because one condition
outcome changes from T to F or from F to T. The MC/DC analysis table
identifies all possible combinations of outcomes for the conditions that lead
to a reversal in the decision. The character x is used to indicate a condition
outcome that is irrelevant to the decision reversal. Decision-reversing
condition outcomes that are not achieved during simulation are marked with a
set of parentheses. There are no parentheses, therefore all decision-reversing
outcomes occurred and MCDC coverage is complete for the decision in line 27.

Coverage for Line 30. Coverage metrics for line 30 appear below the
coverage metrics for line 27.

5-76

Model Coverage for Embedded MATLAB™ Function Blocks

The line 30 decision, if (right1 < left2 || right2 < left1), is nested in
the if statement of the line 27 decision and is evaluated only if the line 27
decision is false. Because the line 27 decision evaluated false five times, line
30 is evaluated five times, three of which were false. Because both the true
and false outcomes were achieved, decision coverage for line 30 is 100%.

Because line 30, like line 27, has two conditions related by a logical OR
operator (||), condition 2 is tested only if condition 1 is false. Because
condition 1 tests false five times, condition 2 is tested five times. Of these,

5-77

5 Using Model Coverage

condition 2 tests true two times and false three times, which accounts for the
two occurrences of the true outcome for this decision.

Because the first condition of the line 30 decision does not test true, both
outcomes did not occur for that condition and the condition coverage for
the first condition is highlighted with a rose color. MCDC coverage is also
highlighted in the same way for a decision reversal based on the true outcome
for that condition.

Coverage for run_intersect_test. The metrics that summarize coverage for
the entire run_intersect_test function are reported prior to its listing and
are repeated here as shown.

The results summarized in the coverage metrics summary can be expressed
in the following conclusions:

• There are eight decision outcomes reported for run_intersect_test in the
line reports: one for line 1 (executed), two for line 6 (true and false), one
for line 14 (executed), two for line 27 (true and false), and two for line 30
(true and false). The decision coverage for each line shows 100% decision

5-78

Model Coverage for Embedded MATLAB™ Function Blocks

coverage. This means that decision coverage for run_intersect_test is
eight of eight possible outcomes, or 100%.

• There are four conditions reported for run_intersect_test in the line
reports. Lines 27 and 30 each have two conditions, and each condition
has two condition outcomes (true and false), for a total of eight condition
outcomes in run_intersect_test. All conditions tested positive for both
the true and false outcome except for the first condition of line 30 (right1
< left2). This means that condition coverage for run_intersect_test is
seven of eight, or 88%.

• The MCDC coverage tables for decision lines 27 and 30 each list two
cases of decision reversal for each condition, for a total of four possible
reversals. Only the decision reversal for a change in the evaluation of the
condition right1 < left2 of line 30 from true to false did not occur during
simulation. This means that three of four, or 75% of the possible reversal
cases were tested for during simulation, for a coverage of 75%.

Model Coverage for the Embedded MATLAB Function Block
and the Model
The model coverage report for the block Embedded MATLAB Function shows
that it has no decisions of its own apart from its function. However, it does
repeat the summary information for its function run_intersect_test as
coverage for its descendent objects, as shown.

5-79

5 Using Model Coverage

Because there are no additional coverage objects in the model apart from
the Embedded MATLAB Function block, the remaining report for the
model intersecting_rectangles also repeats the preceding coverage for
descendent objects, as shown.

5-80

Model Coverage for Embedded MATLAB™ Function Blocks

5-81

5 Using Model Coverage

5-82

6

Customizing the Model
Advisor

The Model Advisor is a tool that runs a set of checks and tasks on a Simulink
model or subsystem to uncover conditions and configuration settings that
result in inaccurate or inefficient simulation or code generation. For more
information about using the Model Advisor, see “Consulting the Model
Advisor” in the Simulink documentation.

The Simulink Verification and Validation software provides an API that
allows you to customize the behavior of the Model Advisor by defining your
own custom tasks and checks, and writing your own callback functions.
This chapter describes how to customize the Model Advisor, covering the
following topics:

• “Customization Process and Guidelines” on page 6-3

• “Demo and Code Example” on page 6-6

• “Registering Custom Checks, Tasks, and Groups” on page 6-7

• “Creating Callback Functions for Checks” on page 6-10

• “Defining Custom Checks” on page 6-17

• “Defining Check Input Parameters” on page 6-26

• “Defining Check List Views” on page 6-31

• “Defining Check Actions” on page 6-33

• “Defining Custom Tasks” on page 6-37

• “Defining Custom Groups” on page 6-41

• “Defining a Process Callback Function” on page 6-45

6 Customizing the Model Advisor

• “Formatting Model Advisor Outputs” on page 6-48

6-2

Customization Process and Guidelines

Customization Process and Guidelines
To customize the Model Advisor, create an M-file called sl_customization.m
and include this file on your MATLAB path.

Note Do not place an sl_customization.m file that customizes the Model
Advisor in your root MATLAB directory or any of its subdirectories, with the
exception of the matlabroot/work directory. Otherwise, the Model Advisor
ignores the customizations that the file specifies.

The M-file should contain a set of functions for registering and defining
custom checks, tasks, and groups. Follow the guidelines in this table.

Function Description When Required

sl_customization() Registers custom checks and
tasks with the Simulink
customization manager at
startup (see “Registering
Custom Checks, Tasks, and
Groups” on page 6-7).

Required for all customizations
to the Model Advisor.

One or more check definition
functions

Defines all custom checks (see
“Defining Custom Checks” on
page 6-17).

Required for custom checks
and to add custom checks to
the By Product folder.

One or more task definition
functions

Defines all custom tasks (see
“Defining Custom Tasks” on
page 6-37).

Required to add custom checks
to the Model Advisor tree,
except when adding the checks
to the By Product folder. You
must write one task for each
custom check.

6-3

6 Customizing the Model Advisor

Function Description When Required

One or more group definitions Defines all custom groups (see
“Defining Custom Groups” on
page 6-41).

Required to add custom tasks
to new folders in the Model
Advisor tree, except when
adding a new subfolder to the
By Product folder. You must
write one group definition for
each new folder.

Check callback functions Defines the actions of the
custom checks (see “Creating
Callback Functions for
Checks” on page 6-10).

Required for custom checks.
You must write one callback
function for each custom
check.

One process callback function Specifies actions to be
performed at different stages
of execution (see “Defining a
Process Callback Function” on
page 6-45).

Optional.

One or more calls to check
input parameters

Specifies input parameters to
custom checks (see “Defining
Check Input Parameters” on
page 6-26).

Optional.

One or more calls to check list
views

Specifies calls to the Model
Advisor Result Explorer for
custom checks (see “Defining
Check List Views” on page
6-31).

Optional.

One or more calls to check
actions

Specifies actions to take for
custom checks (see “Defining
Check Actions” on page 6-33).

Optional.

The following is an example of a the Model Advisor that has custom checks
defined in a custom groups. The selected check includes input parameters,
list view parameters, and actions.

6-4

Customization Process and Guidelines

6-5

6 Customizing the Model Advisor

Demo and Code Example
The Simulink Verification and Validation software provides a demo that
shows how to customize the Model Advisor by adding:

• Custom checks

• Check input parameters

• Check actions

• Check list views to call the Model Advisor Result Explorer

• Custom tasks to include the custom checks in the Model Advisor tree

• Custom folders for grouping the checks

• A process callback function

The demo also provides the source code of the sl_customization.m file that
executes the customizations. The following sections present excerpts from
this source code to illustrate how to write functions for customizing the Model
Advisor.

To run the demo:

1 Type slvnvdemo_mdladv at the MATLAB command line.

2 Follow the instructions in the model.

6-6

Registering Custom Checks, Tasks, and Groups

Registering Custom Checks, Tasks, and Groups

In this section...

“About Registering Custom Checks, Tasks, and Groups” on page 6-7
“Methods for Registering Custom Checks and Groups” on page 6-8
“Code Example: Methods for Registering Custom Checks and Tasks” on
page 6-8

About Registering Custom Checks, Tasks, and Groups
To register checks, tasks, and groups in the Model Advisor, you must create
the function sl_customization() in the sl_customization.m file on your
MATLAB path. This function accepts one argument, a handle to an object
called Simulink.CustomizationManager, as in this example:

function sl_customization(cm)

The customization manager object includes methods for registering custom
checks and tasks. You should use these methods to register customizations
specific to your application, as described and demonstrated in the sections
that follow.

Simulink reads sl_customization.m files when it starts. If you subsequently
change the contents of your customization file, update your environment
by performing these tasks:

1 Close the Model Advisor if it is open.

2 If you previously opened the Model Advisor, reinitialize it either by
removing the slprj folder from your working directory or by closing your
model.

3 Enter the following command at the MATLAB command line:

sl_refresh_customizations

4 Open your model.

5 Start the Model Advisor.

6-7

6 Customizing the Model Advisor

Methods for Registering Custom Checks and Groups
The Simulink.CustomizationManager class includes the following methods
for registering custom checks and tasks:

• addModelAdvisorCheckFcn (@checkDefinitionFcn)

Adds the checks specified by the check definition function to the
By Product folder of the Model Advisor unless otherwise specified
using ModelAdvisor.Root.publish,ModelAdvisor.Group or
ModelAdvisor.FactoryGroup. The checkDefinitionFcn argument is a
handle to the function that defines all custom checks to be added to Model
Advisor as instances of the ModelAdvisor.Check class (see “Defining
Custom Checks” on page 6-17).

• addModelAdvisorTaskFcn (@factorygroupDefinitionFcn)

Adds the checks specified by the factorygroupDefinitionFcn to
the By Task folder of the Model Advisor unless otherwise specified
using ModelAdvisor.Root.publish or ModelAdvisor.Group. The
factorygroupDefinitionFcn argument is a handle to the function that
calls all custom checks to be added to Model Advisor as instances of the
ModelAdvisor.FactoryGroup class (see “Defining Custom Groups” on
page 6-41).

• addModelAdvisorTaskAdvisorFcn (@taskDefinitionFcn)

Adds the tasks specified by taskDefinitionFcn to the folder specified
using ModelAdvisor.Root.publish or ModelAdvisor.Group. The
taskDefinitionFcn argument is a handle to the function that defines
all custom tasks to be added to Model Advisor as instances of the
ModelAdvisor.Task class (see “Defining Custom Tasks” on page 6-37).

• addModelAdvisorProcessFcn (@modelAdvisorProcessFcn)

Adds the process callback function for the Model Advisor checks (see
“Defining a Process Callback Function” on page 6-45).

Code Example: Methods for Registering Custom
Checks and Tasks
The following code example registers custom checks, custom tasks, and a
process callback function:

function sl_customization(cm)

6-8

Registering Custom Checks, Tasks, and Groups

% register custom checks

cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% register custom factory group

cm.addModelAdvisorTaskFcn(@defineModelAdvisorTasks);

% register custom tasks.

cm.addModelAdvisorTaskAdvisorFcn(@defineTaskAdvisor);

% register custom process callback

cm.addModelAdvisorProcessFcn(@ModelAdvisorProcessFunction);

6-9

6 Customizing the Model Advisor

Creating Callback Functions for Checks

In this section...

“About Check Callback Functions” on page 6-10
“Simple Check Callback Function” on page 6-10
“Detailed Check Callback Function” on page 6-11
“Check Callback Function with Hyperlinked Results” on page 6-13

About Check Callback Functions
A callback function specifies the actions a check performs on a model or
subsystem. You must create a callback function for each custom check so that
the Model Advisor can execute the function when the check is selected by a
user. There are several styles of callback functions:

• “Simple Check Callback Function” on page 6-10

• “Detailed Check Callback Function” on page 6-11

• “Check Callback Function with Hyperlinked Results” on page 6-13

All styles of check callback functions provide one or more return arguments
for displaying the results after executing the check. In some cases, return
arguments are strings or cell arrays of strings that support embedded HTML
tags for text formatting. It is recommended that you use the Model Advisor
Formatting API to format your outputs, as described in “Formatting Model
Advisor Outputs” on page 6-48, and limit HTML tags to be compatible with
alternate output formats.

Simple Check Callback Function
Use a simple callback function to return a simple status, perhaps to indicate
whether the model passed or failed the check, or to provide a recommendation
for correcting an issue. The keyword for the simple callback function is
StyleOne. This keyword is required for the check definition (see “Defining
Custom Checks” on page 6-17).

The simple callback function takes the following arguments:

6-10

Creating Callback Functions for Checks

Argument I/O Type Description

system Input Path to the model or subsystem analyzed by the
Model Advisor.

result Output MATLAB string that supports Model Advisor
Formatting API calls or embedded HTML tags
for text formatting.

Here is an example of a simple callback function for a custom check that looks
for models that do not use white as the background color for Simulink models:

function result = SampleStyleOneCallback(system)

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object

if strcmp(get_param(bdroot(system),'ScreenColor'),'white')

result = ModelAdvisor.Text('Passed',{'pass'});

mdladvObj.setCheckResultStatus(true); % set to pass

mdladvObj.setActionEnable(false);

else

result = ModelAdvisor.Text(['It is recommended to select a Simulink '...

'window screen color of white to ensure a readable and printable model.']);

mdladvObj.setCheckResultStatus(false); % set to fail

mdladvObj.setActionEnable(true);

end

Detailed Check Callback Function
Use the detailed check callback function to return and organize results
as strings in a layered, hierarchical fashion. The function provides two
output arguments that allow you to associate text descriptions with one or
more paragraphs of detail. The keyword for the simple callback function is
StyleTwo. This keyword is required for the check definition (see “Defining
Custom Checks” on page 6-17).

The detailed callback function takes the following arguments:

Argument I/O Type Description

system Input Path to the model or system
analyzed by the Model Advisor.

6-11

6 Customizing the Model Advisor

Argument I/O Type Description

ResultDescription Output Cell array of MATLAB strings
that supports Model Advisor
Formatting API calls or embedded
HTML tags for text formatting.
The Model Advisor concatenates
the ResultDescription string
with the corresponding array of
ResultDetails strings.

ResultDetails Output Cell array of cell arrays, each of
which contains one or more strings.

Note The ResultDetails cell array must be the same length as the
ResultDescription cell array.

Here is an example of a detailed check callback function that checks
optimization settings for simulation and code generation:

function [ResultDescription, ResultDetails] = SampleStyleTwoCallback(system)

ResultDescription ={};

ResultDetails ={};

model = bdroot(system);

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object

mdladvObj.setCheckResultStatus(true); % init result status to pass

% Check Simulation optimization setting

ResultDescription{end+1} = ModelAdvisor.Paragraph(['Check Simulation '...

'optimization settings:']);

if strcmp(get_param(model,'BlockReduction'),'off');

ResultDetails{end+1} = {ModelAdvisor.Text(['It is recommended to '...

'turn on Block reduction optimization option.',{'italic'}])};

mdladvObj.setCheckResultStatus(false); % set to fail

mdladvObj.setActionEnable(true);

else

ResultDetails{end+1} = {ModelAdvisor.Text('Passed',{'pass'})};

end

6-12

Creating Callback Functions for Checks

% Check code generation optimization setting

ResultDescription{end+1} = ModelAdvisor.Paragraph(['Check code generation '...

'optimization settings:']);

ResultDetails{end+1} = {};

if strcmp(get_param(model,'LocalBlockOutputs'),'off');

ResultDetails{end}{end+1} = ModelAdvisor.Text(['It is recommended to'...

' turn on Enable local block outputs option.',{'italic'}]);

ResultDetails{end}{end+1} = ModelAdvisor.LineBreak;

mdladvObj.setCheckResultStatus(false); % set to fail

mdladvObj.setActionEnable(true);

end

if strcmp(get_param(model,'BufferReuse'),'off');

ResultDetails{end}{end+1} = ModelAdvisor.Text(['It is recommended to'...

' turn on Reuse block outputs option.',{'italic'}]);

mdladvObj.setCheckResultStatus(false); % set to fail

mdladvObj.setActionEnable(true);

end

if isempty(ResultDetails{end})

ResultDetails{end}{end+1} = ModelAdvisor.Text('Passed',{'pass'});

end

Check Callback Function with Hyperlinked Results
This callback function automatically displays hyperlinks for every object
returned by the check to make it easy to locate problem areas in your model
or subsystem. The keyword for this type of callback function is StyleThree.
This keyword is required for the check definition (see “Defining Custom
Checks” on page 6-17).

This callback function takes the following arguments:

Argument I/O Type Description

system Input Path to the model or system
analyzed by the Model Advisor.

6-13

6 Customizing the Model Advisor

Argument I/O Type Description

ResultDescription Output Cell array of MATLAB strings
that supports the Model Advisor
Formatting API calls or embedded
HTML tags for text formatting.

ResultDetails Output Cell array of cell arrays, each
of which contains one or more
Simulink objects such as blocks,
ports, lines, and Stateflow charts.
The objects must be in the form of a
handle or Simulink path.

Note The ResultDetails cell array must be the same length as the
ResultDescription cell array.

The Model Advisor automatically concatenates each string from
ResultDescription with the corresponding array of objects from
ResultDetails. The Model Advisor displays the contents of ResultDetails
as a set of hyperlinks, one for each object returned in the cell arrays. When
you click a hyperlink, the Model Advisor displays the target object highlighted
in your Simulink model.

The following is an example of a check callback function with hyperlinked
results. This example checks a model for consistent use of font type and font
size in its blocks. It also contains input parameters, actions, and a call to the
Model Advisor Result Explorer, which are discussed in later sections.

function [ResultDescription, ResultDetails] = SampleStyleThreeCallback(system)

ResultDescription ={};

ResultDetails ={};

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

mdladvObj.setCheckResultStatus(true);

needEnableAction = false;

% get input parameters

inputParams = mdladvObj.getInputParameters;

skipFontCheck = inputParams{1}.Value;

6-14

Creating Callback Functions for Checks

regularFontSize = inputParams{2}.Value;

regularFontName = inputParams{3}.Value;

if skipFontCheck

ResultDescription{end+1} = ModelAdvisor.Paragraph('Skipped.');

ResultDetails{end+1} = {};

return

end

regularFontSize = str2double(regularFontSize);

if regularFontSize<1 || regularFontSize>=99

mdladvObj.setCheckResultStatus(false);

ResultDescription{end+1} = ModelAdvisor.Paragraph(['Invalid font size. '...

'Please enter a value between 1 and 99']);

ResultDetails{end+1} = {};

end

% find all blocks inside current system

allBlks = find_system(system);

% block diagram doesn't have font property

% get blocks inside current system that have font property

allBlks = setdiff(allBlks, {system});

% find regular font name blocks

regularBlks = find_system(allBlks,'FontName',regularFontName);

% look for different font blocks in the system

searchResult = setdiff(allBlks, regularBlks);

if ~isempty(searchResult)

ResultDescription{end+1} = ModelAdvisor.Paragraph(['It is recommended to '...

'use same font for blocks to ensure uniform appearance of model. '...

'The following blocks use a font other than ' regularFontName ': ']);

ResultDetails{end+1} = searchResult;

mdladvObj.setCheckResultStatus(false);

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % pull down filter name

myLVParam.Data = get_param(searchResult,'object')';

myLVParam.Attributes = {'FontName'}; % name is default property

mdladvObj.setListViewParameters({myLVParam});

needEnableAction = true;

else

6-15

6 Customizing the Model Advisor

ResultDescription{end+1} = ModelAdvisor.Paragraph(['All block font names '...

'are identical.']);

ResultDetails{end+1} = {};

end

% find regular font size blocks

regularBlks = find_system(allBlks,'FontSize',regularFontSize);

% look for different font size blocks in the system

searchResult = setdiff(allBlks, regularBlks);

if ~isempty(searchResult)

ResultDescription{end+1} = ModelAdvisor.Paragraph(['It is recommended to '...

'use same font size for blocks to ensure uniform appearance of model. '...

'The following blocks use a font size other than ' ...

num2str(regularFontSize) ': ']);

ResultDetails{end+1} = searchResult;

mdladvObj.setCheckResultStatus(false);

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font size blocks'; % pull down filter name

myLVParam.Data = get_param(searchResult,'object')';

myLVParam.Attributes = {'FontSize'}; % name is default property

mdladvObj.setListViewParameters...

({mdladvObj.getListViewParameters{:}, myLVParam});

needEnableAction = true;

else

ResultDescription{end+1} = ModelAdvisor.Paragraph(['All block font sizes '...

'are identical.']);

ResultDetails{end+1} = {};

end

mdladvObj.setActionEnable(needEnableAction);

mdladvObj.setCheckErrorSeverity(1);

If you run Example task with input parameter and auto-fix ability
for the slvnvdemo_mdladv model in the Model Advisor, you can view the
hyperlinked results. Clicking the first hyperlink, slvnvdemo_mdladv/Input,
displays the Simulink model with the Input block highlighted.

6-16

Defining Custom Checks

Defining Custom Checks

In this section...

“About Custom Checks” on page 6-17
“Properties of Custom Checks” on page 6-17
“Defining Where Custom Checks Appear” on page 6-22
“Code Example: Check Definition Function” on page 6-23

About Custom Checks
Custom checks allow you to create a new check to use in the Model Advisor.
You define custom checks in one or more functions that specify the properties
of each instance of the ModelAdvisor.Check class. You must define one
instance of this class for each custom check that you want to add to the Model
Advisor, and register the custom check as described in “Registering Custom
Checks, Tasks, and Groups” on page 6-7. The sections that follow describe
how to define custom checks.

Properties of Custom Checks
The following table describes the properties of the ModelAdvisor.Check class:

Property Data Type Default
Value

Description

Title String '' (null
string)

Name of the check as
it should appear in the
Model Advisor.

6-17

6 Customizing the Model Advisor

Property Data Type Default
Value

Description

ID String '' (null
string)

Permanent, unique
identifier for the check
that you must specify.

Caution

• The value of ID must
remain constant.

• The Model Advisor
generates an error if ID
is not unique.

• Tasks and factory
groups should refer to
checks by ID.

TitleTips String '' (null
string)

Description of the check,
which the Model Advisor
displays in its right pane
when you view details
about the check.

CallbackHandle Function
handle

[] (empty
handle)

Handle to the callback
function for the check.

CallbackContext Enumeration 'None' Context for checking the
model or subsystem:
• None = No special
requirements

• PostCompile = Model
must be compiled

6-18

Defining Custom Checks

Property Data Type Default
Value

Description

CallbackStyle Enumeration 'StyleOne' Type of callback function:
• StyleOne = Simple
check callback function

• StyleTwo = Detailed
check callback function

• StyleThree = Check
callback function with
hyperlinked results

Visible Boolean true Show or hide check?
• true = Display check in
the Model Advisor

• false = Hide check
Enable Boolean true Can user enable and

disable check?
• true = Display check
box control

• false = Check box
control is unavailable

Value Boolean true Initial status:
• true = Check is enabled

• false = Check is
disabled

6-19

6 Customizing the Model Advisor

Property Data Type Default
Value

Description

LicenseName Cell array { } (empty
cell array)

Cell array of names of
product licenses required
to enable the check. The
Model Advisor does not
display the check if license
requirements are not met.

Tip To find the correct
text for license strings,
type help license at the
MATLAB command line.

6-20

Defining Custom Checks

Property Data Type Default
Value

Description

Result Cell array { } (empty
cell array)

Cell array used for
storing the results
returned by the callback
function referenced by
CallbackHandle.

Tip To set the icon
associated with
the check, use the
Simulink.ModelAdvisor
setCheckResultStatus
and
setCheckErrorSeverity
methods.

ListViewVisible Boolean false A boolean value that sets
the status of the Explore
Result button.

• true = Display the
Explore Result
button.

• false = Hides the
Explore Result
button.

How Visible, Enable, and Value Properties Interact
Typically, you modify the behavior of the Visible, Enable, and Value
properties in a process callback function (see “Defining a Process Callback
Function” on page 6-45). The following chart illustrates how these properties
interact:

6-21

6 Customizing the Model Advisor

#���	��+
$
��
�
�������
�����

������

���
��
���	��

�����#����
��
�������

�����

����

���	���+
�����

����

$������
�����

������

!����������
������	
,

$������
������	
,
����������
#����-�	��
�������
��

$������
�����

������

Defining Where Custom Checks Appear
You can specify where the Model Advisor places custom checks within the
Model Advisor tree using the following guidelines.

• To place a check in a new folder in the Model Advisor Task Manager,
use the ModelAdvisor.Group class. See “Defining Custom Groups” on
page 6-41.

• To place a check in a new folder in the By Task folder, use the
ModelAdvisor.FactoryGroup class. See “Defining Custom Groups” on
page 6-41.

6-22

Defining Custom Checks

• To place a check in the By Product folder, use the
ModelAdvisor.Root.publish method.

When you add a check using the ModelAdvisor.Root.publish method, the
Model Advisor creates a ModelAdvisor.Task object for the check. You use
the ModelAdvisor.Task object when you specify an action callback function
for the check. See “Action Callback Function” on page 6-34.

Code Example: Check Definition Function
The following is an example of a function that defines the custom checks
associated with the callback functions described in “Creating Callback
Functions for Checks” on page 6-10. The check definition function returns a
cell array of custom checks to be added to the Model Advisor.

function defineModelAdvisorChecks

mdladvRoot = ModelAdvisor.Root;

% --- sample check 1

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

rec.Title = 'Check Simulink block font';

rec.TitleTips = 'Example style three callback';

rec.setCallbackFcn(@SampleStyleThreeCallback,'None','StyleThree');

rec.setInputParametersLayoutGrid([3 2]);

% define input parameters

inputParam1 = ModelAdvisor.InputParameter;

inputParam1.Name = 'Skip font checks.';

inputParam1.Type = 'Bool';

inputParam1.Value = false;

inputParam1.Description = 'sample tooltip';

inputParam1.setRowSpan([1 1]);

inputParam1.setColSpan([1 1]);

inputParam2 = ModelAdvisor.InputParameter;

inputParam2.Name = 'Standard font size';

inputParam2.Value='12';

inputParam2.Type='String';

inputParam2.Description='sample tooltip';

inputParam2.setRowSpan([2 2]);

inputParam2.setColSpan([1 1]);

inputParam3 = ModelAdvisor.InputParameter;

inputParam3.Name='Valid font';

6-23

6 Customizing the Model Advisor

inputParam3.Type='Combobox';

inputParam3.Description='sample tooltip';

inputParam3.Entries={'Arial', 'Arial Black'};

inputParam3.setRowSpan([2 2]);

inputParam3.setColSpan([2 2]);

rec.setInputParameters({inputParam1,inputParam2,inputParam3});

% define action (fix) operation

myAction = ModelAdvisor.Action;

myAction.setCallbackFcn(@sampleActionCB);

myAction.Name='Fix block fonts';

myAction.Description=...

'Click the button to update all blocks with specified font';

rec.setAction(myAction);

% add 'Explore Result' button

rec.ListViewVisible = true;

% publish check into By Product > Demo group.

mdladvRoot.publish(rec, 'Demo');

% --- sample check 2

rec = ModelAdvisor.Check('com.mathworks.sample.Check2');

rec.Title = 'Check Simulink window screen color';

rec.TitleTips = 'Example style one callback';

rec.setCallbackFcn(@SampleStyleOneCallback,'None','StyleOne');

% define action (fix) operation

myAction2 = ModelAdvisor.Action;

myAction2.setCallbackFcn(@sampleActionCB2);

myAction2.Name='Fix window screen color';

myAction2.Description=...

'Click the button to change Simulink window screen color to white';

rec.setAction(myAction2);

% publish check into By Product > Demo group.

mdladvRoot.publish(rec, 'Demo');

% --- sample check 3

rec = ModelAdvisor.Check('com.mathworks.sample.Check3');

rec.Title = 'Check model optimization settings';

rec.TitleTips = 'Example style two callback';

rec.setCallbackFcn(@SampleStyleTwoCallback,'None','StyleTwo');

% define action (fix) operation

myAction3 = ModelAdvisor.Action;

6-24

Defining Custom Checks

myAction3.setCallbackFcn(@sampleActionCB3);

myAction3.Name='Fix model optimization settings';

myAction3.Description='Click the button to turn on model optimization settings';

rec.setAction(myAction3);

% publish check into By Product > Demo group.

mdladvRoot.publish(rec, 'Demo');

6-25

6 Customizing the Model Advisor

Defining Check Input Parameters

In this section...

“About Input Parameters” on page 6-26
“Properties of Input Parameters” on page 6-26
“Specifying Input Parameter Layout” on page 6-28
“Code Example: Input Parameter Definition” on page 6-29

About Input Parameters
Input parameters allow you to request input from the user for a Model Advisor
check. You define input parameters using the ModelAdvisor.InputParameter
class inside a custom check function (see “Defining Custom Checks” on page
6-17). You must define one instance of this class for each input parameter
that you want to add to a Model Advisor check.

Properties of Input Parameters
The following table describes the properties of the
ModelAdvisor.InputParameter class:

Property Data Type Default
Value

Description

Name String '' (null string) Name of the input
parameter as it should
appear in the custom
check.

Type Enumeration '' (null string) Type of input
parameter. Used with
Value or Entries
to define input
parameters. See the
following table for
details.

6-26

Defining Check Input Parameters

Property Data Type Default
Value

Description

Value Depends on
Type. See
following
table.

Depends on
Type. See
following
table.

Value of the input
parameter. This
property is valid
only when the Type
is Bool, String, Enum,
or ComboBox. See
following table.

Entries Depends on
Type. See
following
table.

Depends on
Type. See
following
table.

This property is valid
only when the Type
is Enum, ComboBox,
or PushButton. See
following table.

Description String '' (null string) Description of the
parameter, which the
Model Advisor displays
in the right pane when
you view details about
the check.

Types of Input Parameters

Type Data Type Default
Value

Description

Bool Boolean false A check box.
String String '' (null string) A text box.
Enum Cell array First entry in

the menu
A drop-down menu.
• Use Entries to
define the entries
in the menu.

• Use Value to indicate
a specific entry in the
menu.

6-27

6 Customizing the Model Advisor

Types of Input Parameters (Continued)

Type Data Type Default
Value

Description

ComboBox Cell array First entry in
the menu

A drop-down menu that
allows the user to type
in a value or choose a
value from the menu.
• Use Entries to
define the entries
in the menu.

• Use Value to indicate
a specific entry in
the menu or to enter
a value not in the
menu.

PushButton N/A N/A A button.

When you click the
button, the callback
function specified by
Entries is called.

Specifying Input Parameter Layout
You can specify the layout of input parameters in the right pane of the Model
Advisor window in an input parameter definition. Use the following methods
to place input parameters.

• ModelAdvisor.Check.setInputParametersLayoutGrid

Specifies the size of the input parameter grid.

• ModelAdvisor.InputParameter.setRowSpan

Specifies the number of rows the parameter occupies in the Input
Parameter layout grid.

• ModelAdvisor.InputParameter.setColSpan

6-28

Defining Check Input Parameters

Specifies the number of columns the parameter occupies in the Input
Parameter layout grid.

See the ModelAdvisor.Check and ModelAdvisor.InputParameter class
references for information on using these methods.

Code Example: Input Parameter Definition
The following is an example of defining input parameters to add to a custom
check. You must include input parameter definitions inside a custom check
definition (see “Code Example: Check Definition Function” on page 6-23). The
following code, when included in a custom check definition, creates three
input parameters.

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
rec.setInputParametersLayoutGrid([3 2]);
% define input parameters
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Skip font checks.';
inputParam1.Type = 'Bool';
inputParam1.Value = false;
inputParam1.Description = 'sample tooltip';
inputParam1.setRowSpan([1 1]);
inputParam1.setColSpan([1 1]);
inputParam2 = ModelAdvisor.InputParameter;
inputParam2.Name = 'Standard font size';
inputParam2.Value='12';
inputParam2.Type='String';
inputParam2.Description='sample tooltip';
inputParam2.setRowSpan([2 2]);
inputParam2.setColSpan([1 1]);
inputParam3 = ModelAdvisor.InputParameter;
inputParam3.Name='Valid font';
inputParam3.Type='Combobox';
inputParam3.Description='sample tooltip';
inputParam3.Entries={'Arial', 'Arial Black'};
inputParam3.setRowSpan([2 2]);
inputParam3.setColSpan([2 2]);
rec.setInputParameters({inputParam1,inputParam2,inputParam3});

6-29

6 Customizing the Model Advisor

The Model Advisor displays these input parameters in an Input Parameters
box in the right pane.

6-30

Defining Check List Views

Defining Check List Views

In this section...

“About List Views” on page 6-31
“Properties of List Views” on page 6-31
“Code Example: List View Definition” on page 6-32

About List Views
List views allow you to provides the information to populate the Model
Advisor Result Explorer window, and adds the Explore Result button to a
custom check in the Model Advisor window. You define list views using the
ModelAdvisor.ListViewParameter class inside a custom check function
(see “Defining Custom Checks” on page 6-17). You must define one instance
of this class for each list view that you want to add to a Model Advisor
Result Explorer. See “Batch-Fixing Warnings or Failures” in the Simulink
documentationfor information on using the dialog box.

Properties of List Views
The following table describes the properties of the
ModelAdvisor.ListViewParameter class:

Property Data Type Default
Value

Description

Name String '' (null string) Entry in the Show
drop-down menu in the
Model Advisor Result
Explorer.

Data Array of
Simulink
objects

[] (empty
array)

The objects shown
in the Model Advisor
Result Explorer.

Attributes Cell array {} (empty cell
array)

The attributes to show
in the center pane of the
Model Advisor Result
Explorer.

6-31

6 Customizing the Model Advisor

Code Example: List View Definition
The following is an example of defining list views. You must make
the Explore Result button visible using the ModelAdvisor.Check
ListViewVisible property inside a custom check function, and include
list view definitions inside a check callback function (see “Detailed Check
Callback Function” on page 6-11).

The following code, when included in a custom check function, adds the
Explore Result button to the check in the Model Advisor window.

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

% add 'Explore Result' button

rec.ListViewVisible = true;

The following code, when included in a check callback function, provides the
information to populate the Model Advisor Result Explorer window.

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

mdladvObj.setCheckResultStatus(true);

% define list view parameters

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter

myLVParam.Data = get_param(searchResult,'object')';

myLVParam.Attributes = {'FontName'}; % name is default property

mdladvObj.setListViewParameters({myLVParam});

6-32

Defining Check Actions

Defining Check Actions

In this section...

“About Actions” on page 6-33
“Properties of Actions” on page 6-33
“Action Callback Function” on page 6-34
“Code Example: Action Definition” on page 6-34
“Code Example: Action Callback Function” on page 6-35

About Actions
Actions allow you to specify an action to take for a Model Advisor check.
When you define an action, the Model Advisor window includes an Action box
below the Analysis box. You define actions using the ModelAdvisor.Action
class inside a custom check function (see “Defining Custom Checks” on page
6-17). You must define

• One instance of this class for each action that you want to take.

• One action callback function for each action (see “Action Callback Function”
on page 6-34).

Note Each check can contain only one action.

Properties of Actions
The following table describes the properties of the ModelAdvisor.Action
class:

Property Data Type Default
Value

Description

Name String '' (null string) The action button label.
This field is required.

Description String '' (null string) The message displayed
in the Action box.

6-33

6 Customizing the Model Advisor

Action Callback Function
An action callback function specifies the actions the Model Advisor performs
on a model or subsystem when the user clicks the action button. You must
create one callback function for the action that you want to take.

The action callback function takes the following arguments:

Argument I/O Type Description

taskobj Input The ModelAdvisor.Task object for the check
that includes an action definition.

result Output MATLAB string that supports Model Advisor
Formatting API calls or embedded HTML tags
for text formatting.

See “Code Example: Action Callback Function” on page 6-35 for an example of
an action callback function.

Code Example: Action Definition
The following is an example of defining actions to do within a custom check.
You must include action definitions inside a check definition function (see
“Code Example: Check Definition Function” on page 6-23). The following
code, when included in a check definition function, provides the information to
populate the Action box in the Model Advisor window.

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

% define action (fix) operation

myAction = ModelAdvisor.Action;

%Specify a callback function for the action

myAction.setCallbackFcn(@sampleActionCB);

myAction.Name='Fix block fonts';

myAction.Description=...

'Click the button to update all blocks with specified font';

rec.setAction(myAction);

The Model Advisor displays an Action box in the right pane.

6-34

Defining Check Actions

Code Example: Action Callback Function
The following is an example of an action callback function that updates all of
the blocks in the model with the font specified in the Input Parameter defined
in “Code Example: Input Parameter Definition” on page 6-29.

function result = sampleActionCB(taskobj)

mdladvObj = taskobj.MAObj;

system = getfullname(mdladvObj.System);

% get input parameters

inputParams = mdladvObj.getInputParameters;

regularFontSize = inputParams{2}.Value;

regularFontName = inputParams{3}.Value;

% find all blocks inside current system

allBlks = find_system(system);

% block diagram itself doesn't have font property

% get blocks inside current system that have font property

allBlks = setdiff(allBlks, {system});

6-35

6 Customizing the Model Advisor

% find regular font name blocks

regularBlks = find_system(allBlks,'FontName',regularFontName);

% look for different font blocks in the system

fixBlks = setdiff(allBlks, regularBlks);

% fix them one by one

for i=1:length(fixBlks)

set_param(fixBlks{i},'FontName',regularFontName);

end

% save result

resultText1 = ModelAdvisor.Text([num2str(length(fixBlks)), ...

' blocks has been updated with specified font ', regularFontName]);

% find regular font size blocks

regularBlks = find_system(allBlks,'FontSize',str2double(regularFontSize));

% look for different font size blocks in the system

fixBlks = setdiff(allBlks, regularBlks);

% fix them one by one

for i=1:length(fixBlks)

set_param(fixBlks{i},'FontSize',regularFontSize);

end

% save result

resultText2 = ModelAdvisor.Text([num2str(length(fixBlks)), ...

' blocks has been updated with specified font size ', regularFontSize]);

result = ModelAdvisor.Paragraph;

result.addItem([resultText1 ModelAdvisor.LineBreak resultText2]);

mdladvObj.setActionEnable(false);

6-36

Defining Custom Tasks

Defining Custom Tasks

In this section...

“About Custom Tasks” on page 6-37
“Properties of Custom Tasks” on page 6-37
“Defining Where Tasks Appear” on page 6-40
“Code Example: Task Definition Function” on page 6-40

About Custom Tasks
Custom tasks provide a method for adding checks to the Model Advisor tree.
You define custom tasks in one or more functions that specify the properties
of each instance of the ModelAdvisor.Task class. You must define one
instance of this class for each custom task that you want to add to the Model
Advisor, and register the custom task as described in “Registering Custom
Checks, Tasks, and Groups” on page 6-7. The sections that follow describe
how to define custom tasks.

Properties of Custom Tasks
The following table describes the properties of the ModelAdvisor.Task class:

Property Data Type Default
Value

Description

DisplayName String '' (null string) Name of the task as it
should appear in Model
Advisor.

6-37

6 Customizing the Model Advisor

Property Data Type Default
Value

Description

ID String '' (null string) Permanent, unique
identifier for the task.
The Model Advisor
automatically assigns a
string toID if you do not
specify it.

Caution

• The value of ID must
remain constant.

• The Model Advisor
generates an error if
ID is not unique.

• Groups should refer
to tasks by ID.

Description String '' (null string) Description of the task,
which Model Advisor
displays in the Analysis
box.

Visible Boolean true Show or hide task?
• true = Display task
in Model Advisor

• false = Hide task
Enable Boolean true Can user enable and

disable task?
• true = Display check
box control for task

• false = Hide check
box control for task

6-38

Defining Custom Tasks

Property Data Type Default
Value

Description

Value Boolean true Initial status:
• true = Task is
enabled

• false = Task is
disabled

LicenseName Cell array { } (empty cell
array)

Cell array of names
of product licenses
required to enable
the check. Model
Advisor does not
display the check if
license requirements
are not met.If
ModelAdvisor.Check
LicenseName is
specified, the Model
Advisor displays the
check when the union of
both properties is true.

Tip To find the correct
text for license strings,
type help license at
the MATLAB command
line.

MAObj Simulink.
ModelAdvisor
object

Handle to
Simulink.
ModelAdvisor
object

The Model Advisor
object you are working
on.

How Visible, Enable, and Value Properties Interact for Tasks
These properties interact the same way for tasks as for checks (see “How
Visible, Enable, and Value Properties Interact” on page 6-21).

6-39

6 Customizing the Model Advisor

Defining Where Tasks Appear
You can specify where the Model Advisor places tasks within the Model
Advisor tree using the following guidelines.

• To place a task in a new folder in the Model Advisor Task Manager,
use the ModelAdvisor.Group class. See “Defining Custom Groups” on
page 6-41.

• To place a task in a new folder in the By Task folder, use the
ModelAdvisor.FactoryGroup class. See “Defining Custom Groups” on
page 6-41.

Code Example: Task Definition Function
The following is an example of a task definition function. This function
defines three tasks. See “Code Example: Group Definition” on page 6-43 for
an example of placing these tasks into a custom group.

function defineTaskAdvisor

mdladvRoot = ModelAdvisor.Root;

MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

MAT1.DisplayName='Example task with input parameter and auto-fix ability';

MAT1.setCheck('com.mathworks.sample.Check1');

mdladvRoot.register(MAT1);

MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');

MAT2.DisplayName='Example task 2';

MAT2.setCheck('com.mathworks.sample.Check2');

mdladvRoot.register(MAT2);

MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');

MAT3.DisplayName='Example task 3';

MAT3.setCheck('com.mathworks.sample.Check3');

mdladvRoot.register(MAT3);

6-40

Defining Custom Groups

Defining Custom Groups

In this section...

“About Custom Groups” on page 6-41
“Defining Where Custom Groups Appear” on page 6-41
“Properties of Model Advisor Groups” on page 6-42
“Code Example: Group Definition” on page 6-43

About Custom Groups
Groups are used to consolidate checks in the Model Advisor by functionality
or usage. You define custom groups in

• One or more functions that specify the properties of each instance of the
ModelAdvisor.FactoryGroup class.

• One or more task definition functions that specify the properties of each
instance of the ModelAdvisor.Group class. See “Defining Custom Tasks”
on page 6-37 for more information about task definition functions.

You must define one instance of the group classes for each grouping that you
want to add to the Model Advisor, and register the custom group as described
in “Registering Custom Checks, Tasks, and Groups” on page 6-7. The sections
that follow describe how to define custom groups.

Defining Where Custom Groups Appear
You can specify where custom groups are placed within the Model Advisor
tree using the following guidelines:

• To define a new group in the Model Advisor Task Manager, use the
ModelAdvisor.Group class.

• To define a new group in the By Task folder, use the
ModelAdvisor.FactoryGroup class.

6-41

6 Customizing the Model Advisor

Note To define a new group in the By Product folder, you must use the
ModelAdvisor.Root.publish method within a custom check. See “Defining
Where Custom Checks Appear” on page 6-22 for more information.

Properties of Model Advisor Groups
The following table describes the properties of the ModelAdvisor.Group and
ModelAdvisor.FactoryGroup classes:

Property Data Type Default
Value

Description

DisplayName String '' (null string) Name of the group as it
should appear in Model
Advisor.

ID String You must
provide ID

Permanent, unique
identifier for the group
that you must specify.

Caution

• The value of ID must
remain constant.

• The Model Advisor
generates an error if
ID is not unique.

• Groups should refer
to other groups by ID.

6-42

Defining Custom Groups

Property Data Type Default
Value

Description

Description String '' (null string) Description of the
group, which Model
Advisor displays in the
right pane when you
view details about the
group.

MAObj Simulink.
ModelAdvisor
object

Handle to
Simulink.
ModelAdvisor
object

The Model Advisor
object you are working
on.

Code Example: Group Definition
The following is an example of a group definition that places the tasks defined
in “Code Example: Task Definition Function” on page 6-40 inside a folder
called My Group under the Model Advisor Task Manager folder. This
group definition is included in the task definition function.

MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');

MAG.DisplayName='My Group';

MAG.addTask(MAT1);

MAG.addTask(MAT2);

MAG.addTask(MAT3);

mdladvRoot.publish(MAG); % publish under Model Advisor Task Manager

The following is an example of a factory group definition function that places
the checks defined in “Code Example: Check Definition Function” on page
6-23 into a folder called Demo Factory Group inside of the By Task folder.

function defineModelAdvisorTasks

mdladvRoot = ModelAdvisor.Root;

% --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

rec.DisplayName='Demo Factory Group';

rec.Description='Demo Factory Group';

rec.addCheck('com.mathworks.sample.Check1');

6-43

6 Customizing the Model Advisor

rec.addCheck('com.mathworks.sample.Check2');

rec.addCheck('com.mathworks.sample.Check3');

mdladvRoot.publish(rec); % publish inside By Task

6-44

Defining a Process Callback Function

Defining a Process Callback Function

In this section...

“About Process Callback Functions” on page 6-45
“Process Callback Function Arguments” on page 6-45
“Code Example: Process Callback Function” on page 6-46

About Process Callback Functions
The process callback function is an optional function that lets you modify
the appearance of checks and tasks in the Model Advisor, and process check
results at run time. The process callback function specifies actions to be
performed at different stages of Model Advisor execution:

• configure stage: The Model Advisor executes configure actions at
startup, after all checks and tasks have been initialized. At this stage, you
can specify actions to customize how the Model Advisor constructs lists of
checks and tasks by modifying Visible, Enable, and Value properties. For
example, you can remove, rename, and selectively display checks and tasks.

• process_results stage: The Model Advisor executes process_results
actions after checks complete execution. You can specify actions to examine
and report on the results returned by check callback functions.

If you create a process callback function, you must register it as described in
“Registering Custom Checks, Tasks, and Groups” on page 6-7. The sections
that follow provide mode information about defining your own process
callback functions.

Process Callback Function Arguments
The process callback function takes the following arguments:

6-45

6 Customizing the Model Advisor

Argument I/O Type Data Type Description

stage Input Enumeration Specifies the stages at
which process callback
actions are executed.
Use this argument in
a switch statement to
specify actions for the
stages configure and
process_results.

system Input Path Model or subsystem to
be analyzed by Model
Advisor.

checkCellArray Input/Output Cell array As input, the array of
checks constructed in the
check definition function.
As output, the array of
checks modified by actions
in the configure stage.

taskCellArray Input/Output Cell array As input, the array of
tasks constructed in the
task definition function.
As output, the array of
tasks modified by actions
in the configure stage.

Code Example: Process Callback Function
Here is an example of a process callback function that specifies actions in
the configure stage to enable only the custom checks assigned to the Demo
group in “Code Example: Check Definition Function” on page 6-23. In the
process_results stage, this function displays an informative dialog box
for checks that do not pass.

function [checkCellArray taskCellArray] = ...

ModelAdvisorProcessFunction(stage, system, checkCellArray, taskCellArray)

switch stage

case 'configure'

for i=1:length(checkCellArray)

6-46

Defining a Process Callback Function

% hidden all checks that do not belong to Demo group

if ~(strcmp(checkCellArray{i}.Group, 'Demo'))

checkCellArray{i}.Visible = false;

checkCellArray{i}.Value = false;

end

end

case 'process_results'

for i=1:length(checkCellArray)

% print message if check does not pass

if checkCellArray{i}.Selected && ...

(strcmp(checkCellArray{i}.Title, ...

'Check Simulink window screen color'))

if isempty(strfind(checkCellArray{i}.Result, 'Passed'))

disp('Example message from Model Advisor Process callback.');

end

end

end

end

6-47

6 Customizing the Model Advisor

Formatting Model Advisor Outputs

In this section...

“What Is the Model Advisor Formatting API?” on page 6-48
“Formatting Text” on page 6-48
“Formatting Lists” on page 6-49
“Formatting Tables” on page 6-50
“Formatting Paragraphs” on page 6-50
“Code Example: Model Advisor Formatted Output” on page 6-51

What Is the Model Advisor Formatting API?
You can use the Model Advisor Formatting API to produce formatted outputs
in Model Advisor. The following constructors of the ModelAdvisor class
provide the ability to format the output. For more information on each
constructor and associated methods, click the link in the Constructor column.

Constructor Description

ModelAdvisor.Text Formats element text.
ModelAdvisor.Paragraph Combines elements into paragraph

format.
ModelAdvisor.List Creates a list of elements.
ModelAdvisor.LineBreak Adds a line break between elements.
ModelAdvisor.Table Creates a table.
ModelAdvisor.Image Adds an image to the output.

Formatting Text
Text is the simplest form of output, but you can format text in many different
ways. The default text formatting is:

• Empty

• Default color (black)

6-48

Formatting Model Advisor Outputs

• Unformatted (that is, not bold, italicized, underlined, linked, subscripted,
or superscripted)

To change text formatting, use the ModelAdvisor.Text constructor. When
you want one type of formatting for all text, you can achieve this using the
syntax

ModelAdvisor.Text(content, {attributes})

When you want multiple types of formatting, you must build the text, as
shown in the next example:

t1 = ModelAdvisor.Text('It is ');

t2 = ModelAdvisor.Text('recommended', {'italic'});

t3 = ModelAdvisor.Text(' to use same font for ');

t4 = ModelAdvisor.Text('blocks', {'bold'});

t5 = ModelAdvisor.Text(' to ensure uniform appearance of model.');

result = [t1, t2, t3, t4, t5];

You can add ASCII and Extended ASCII characters using the MATLAB
char command. See the ModelAdvisor.Text constructor reference for more
information.

Formatting Lists
You can create two types of lists, numbered and bulleted. The default list
formatting is bulleted. Use the ModelAdvisor.List constructor to create and
format lists (see ModelAdvisor.List). You can create lists with indented
subsections, formatted as either numbered or bulleted, as shown in the next
example:

subList = ModelAdvisor.List();

subList.setType('numbered')

subList.addItem(ModelAdvisor.Text('Sub entry 1', {'pass','bold'}));

subList.addItem(ModelAdvisor.Text('Sub entry 2', {'pass','bold'}));

topList = ModelAdvisor.List();

topList.addItem([ModelAdvisor.Text('Entry level 1',{'keyword','bold'}), subList]);

topList.addItem([ModelAdvisor.Text('Entry level 2',{'keyword','bold'}), subList]);

6-49

6 Customizing the Model Advisor

Formatting Tables
The default table formatting is:

• Default color (black)

• Left justified

• Bold title, row, and column headings

You can change table formatting using the ModelAdvisor.Table constructor
(see ModelAdvisor.Table). The following example code creates a subtable
within a table, as shown in the figure:

table1 = ModelAdvisor.Table(1,1);

table2 = ModelAdvisor.Table(2,3);

table2.setHeading('Table 2');

table2.setHeadingAlign('center');

table2.setColHeading(1, 'Header 1');

table2.setColHeading(2, 'Header 2');

table2.setColHeading(3, 'Header 3');

table1.setHeading('Table 1');

table1.setEntry(1,1,table2);

Formatting Paragraphs
Paragraphs need to be handled explicitly because most markup languages do
not support line breaks. The default paragraph formatting is:

• Empty

• Default color (black)

6-50

Formatting Model Advisor Outputs

• Unformatted, that is, not bold, italicized, underlined, linked, subscripted,
or superscripted

• Aligned left

If you want to change paragraph formatting, use the ModelAdvisor.Paragraph
constructor (see ModelAdvisor.Paragraph).

Code Example: Model Advisor Formatted Output
The following is the example from “Simple Check Callback Function” on page
6-10, reformatted using the Model Advisor Formatting API.

function result = SampleStyleOneCallback(system)

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

if strcmp(get_param(bdroot(system), 'ScreenColor'),'white')

result = ModelAdvisor.Text('Passed',{'pass'});

mdladvObj.setCheckResultStatus(true);

else

msg1 = ModelAdvisor.Text(...

['It is recommended to select a Simulink window screen color'...

' of white to ensure a readable and printable model. Click ']);

msg2 = ModelAdvisor.Text('here');

msg2.setHyperlink('matlab: set_param(bdroot,''ScreenColor'',''white'')');

msg3 = ModelAdvisor.Text(' to change screen color to white.');

result = [msg1, msg2, msg3];

mdladvObj.setCheckResultStatus(false);

end

6-51

6 Customizing the Model Advisor

6-52

7

Function Reference

Requirements Management
Interface (p. 7-2)

Access Requirements Management
Interface

Model Coverage (p. 7-3) Configure and execute model
coverage tests; store and report test
results

Model Advisor Customization API
(p. 7-4)

Customize the Model Advisor

Model Advisor Formatting API
(p. 7-5)

Format Model Advisor outputs

7 Function Reference

Requirements Management Interface
rmi Requirements Management

Interface API
rminav Start Requirements Management

Interface

7-2

Model Coverage

Model Coverage
conditioninfo Display condition coverage

information for model object
cv.cvdatagroup Group together multiple cvdata

objects
cv.cvtestgroup Group together multiple cvtest

objects
cvexit Exit model coverage environment
cvhtml Produce HTML report from model

coverage objects in memory
cvload Load coverage tests and results

stored in file
cvmodelview Display model coverage results with

model coloring
cvsave Save coverage tests and results to

file
cvsim Simulate and return model coverage

results for test objects
cvsimref Simulate and return model coverage

results for referenced models
cvtest Create model coverage test

specification object
decisioninfo Display decision coverage

information for model object
mcdcinfo Display modified condition/decision

coverage information for model
object

sigrangeinfo Display signal range coverage
information for model object

tableinfo Display lookup table coverage
information for model object

7-3

7 Function Reference

Model Advisor Customization API
ModelAdvisor.Action Add actions to custom checks
ModelAdvisor.Check Create custom checks
ModelAdvisor.FactoryGroup Define group in By Task folder
ModelAdvisor.Group Define custom groups
ModelAdvisor.InputParameter Add input parameters to custom

checks
ModelAdvisor.ListViewParameter Add list view parameters to custom

checks
ModelAdvisor.Root Identify root node
ModelAdvisor.Task Define custom tasks

7-4

Model Advisor Formatting API

Model Advisor Formatting API
ModelAdvisor.Image Include image in Model Advisor

output
ModelAdvisor.LineBreak Insert line break
ModelAdvisor.List Create list class
ModelAdvisor.Paragraph Create and format paragraph
ModelAdvisor.Table Create table class
ModelAdvisor.Text Create Model Advisor text output

7-5

7 Function Reference

7-6

8

Functions — Alphabetical
List

conditioninfo

Purpose Display condition coverage information for model object

Syntax coverage = conditioninfo(cvdo, object)
coverage = conditioninfo(cvdo, object, ignore_descendants)
[coverage, description] = conditioninfo(cvdo, object)

Description coverage = conditioninfo(cvdo, object) returns condition
coverage results from the cvdata object cvdo for the model component
specified by object. See “Specifying a Model Object” on page 8-3 for
more information about the object argument. The value of coverage is
a two-element vector of form [covered_outcomes total_outcomes],
the elements of which are defined as follows:

• covered_outcomes — the number of condition outcomes satisfied
for object

• total_outcomes — the total number of condition outcomes for
object

Note coverage is empty if cvdo does not contain condition coverage
results for object.

coverage = conditioninfo(cvdo, object, ignore_descendants)
returns condition coverage results for object, ignoring the coverage of
its descendent objects if ignore_descendants is true (i.e., 1).

[coverage, description] = conditioninfo(cvdo, object)
returns condition coverage results and textual descriptions of each
condition in object. description is a structure array containing the
following fields:

• text — string describing a condition or the block port to which it
applies

• trueCnts— number of times the condition was true in a simulation

• falseCnts— number of times the condition was false in a simulation

8-2

conditioninfo

Specifying a Model Object

The object argument specifies an object in the Simulink model or
Stateflow diagram that received decision coverage. Valid values for
object include the following:

Object Specification Description

BlockPath Full path to a Simulink model or
block

BlockHandle Handle to a Simulink model or
block

slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a

Stateflow block and the ID of an
object contained in that chart

{BlockPath, sfObj} Cell array with the path to a
Stateflow block and a Stateflow
object API handle contained in
that chart

[BlockHandle, sfID] Array with a Stateflow block
handle and the ID of an object
contained in that chart

Example The following commands open the slvnvdemo_cv_small_controller
demo model, create the test specification object testObj, enable
condition coverage for testObj, and execute testObj.

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
testObj.settings.condition = 1;

8-3

conditioninfo

data = cvsim(testObj)

Afterward, issue the following commands to retrieve the condition
coverage results for the Logic block (in the Gain subsystem) and
determine its percentage of condition outcomes covered.

blk_handle = get_param([mdl, '/Gain/Logic'], 'Handle');
cov = conditioninfo(data, blk_handle)
percent_cov = 100 * cov(1) / cov(2)

See Also decisioninfo, mcdcinfo

8-4

cv.cvdatagroup

Purpose Group together multiple cvdata objects

Description Instances of this class contain a collection of cvdata objects. For more
information, see “Extracting Results from cv.cvdatagroup” on page 5-63.

Property
Summary

Name Description

name Name of the cv.cvdatagroup object.

Method
Summary

Name Description

allNames Get all model names associated with
cv.cvdatagroup object.

get Get cvdata objects.

Properties name
Description

Name of the cv.cvdatagroup object.
Data Type
string
Access
RW

Methods allNames
Purpose

Get all model names associated with cv.cvdatagroup object.
Syntax
allNames

Description
Returns a cell array of strings identifying all model names associated
with a cv.cvdatagroup object.

8-5

cv.cvdatagroup

get
Purpose
Get cvdata objects.
Syntax
get(modelName)

Arguments
modelName

String specifying the name of a model whose cvdata object is to
be returned.

Description
Returns the cvdata object that corresponds to modelName.

See Also cvsimref

8-6

cv.cvtestgroup

Purpose Group together multiple cvtest objects

Description Instances of this class contain a collection of cvtest objects. For more
information, see “Creating a Test Group with cv.cvtestgroup” on page
5-62.

Property
Summary

Name Description

name Name of the cv.cvtestgroup object.

Method
Summary

Name Description

add Add cvtest objects.
allNames Get all model names associated with

cv.cvtestgroup object.
get Get cvtest objects.

Properties name
Description

Name of the cv.cvtestgroup object.
Data Type
string
Access
RW

Methods add
Purpose

Add cvtest objects.
Syntax
add(cvto1, cvto2, ...)

8-7

cv.cvtestgroup

Arguments
cvto1

String specifying the name of a cvtest object to be added to the
cv.cvtestgroup object.

cvto2
String specifying the name of another cvtest object to be added
to the cv.cvtestgroup object.

Description
Adds cvtest objects to a cv.cvtestgroup object.

allNames
Purpose
Get all model names associated with cv.cvtestgroup object.
Syntax
allNames

Description
Returns a cell array of strings that identify all model names associated
with a cv.cvtestgroup object.

get
Purpose
Get cvtest objects.
Syntax
get(modelName)

Arguments
modelName

String specifying the name of a model whose cvtest object is to
be returned.

Description
Returns the cvtest object that corresponds to modelName.

See Also cvsimref, cvtest

8-8

cvexit

Purpose Exit model coverage environment

Syntax cvexit

Description cvexit exits the model coverage environment. Issuing this command
causes the Model Coverage Tool to close the Coverage Display window
and remove coloring from a block diagram that displays its model
coverage results.

8-9

cvhtml

Purpose Produce HTML report from model coverage objects in memory

Syntax cvhtml(file, cvdo)
cvhtml(file, cvdo1, cvdo2,...)
cvhtml(file, cvdo1, cvdo2,..., options)
cvhtml(file, cvdo1, cvdo2,..., options, detail)

Description Use the cvhtml command to produce an HTML report from
cv.cvdatagroup or cvdata objects you produce when you run a model
coverage test in simulation.

Note The model must be open when using the cvhtml command to
generate its coverage report.

cvhtml(file, cvdo) creates an HTML report of the coverage results
in the cvdata or cv.cvdatagroup object cvdo, which is written to the
file file in the current MATLAB directory.

cvhtml(file, cvdo1, cvdo2,...) creates a combined report of
several cvdata objects. The results from each object are displayed
in a separate column of the HTML report. Each cvdata object must
correspond to the same root model or subsystem, or the function
produces errors.

cvhtml(file, cvdo1, cvdo2,..., options) creates a combined
report of several cvdata objects using the report options specified by
the options string. The table in “Report Options” on page 8-11 lists
available options and their default settings. To enable an option, set
it equal to 1 (e.g., '-hTR=1'); to disable an option, set it equal to 0
(e.g., '-bRG=0'). To specify multiple report options, list individual
options in a single options string separated by commas or spaces (e.g.,
'-hTR=1 -bRG=0 -scm=0').

cvhtml(file, cvdo1, cvdo2,..., options, detail) creates a
combined report of several cvdata objects and specifies the detail level
of the report with the value of detail, an integer between 0 and 3.

8-10

cvhtml

Greater numbers for detail indicate greater detail. The default value
is 2.

Report
Options

The following table summarizes the report options that you can specify
using cvhtml. See “Settings” on page 5-19 under the “Report Tab”
section in the Simulink Verification and Validation User’s Guide for
more information.

Option Description Default
Setting

-aTS Include each test in the model summary on

-bRG Produce bar graphs in the model summary on

-bTC Use two color bar graphs (red, blue) off

-hTR Display hit/count ratio in the model summary off

-nFC Do not report fully covered model objects off

-scm Include cyclomatic complexity numbers in
summary

on

-bcm Include cyclomatic complexity numbers in
block details

on

8-11

cvload

Purpose Load coverage tests and results stored in file

Syntax [cvtos, cvdos] = cvload(filename)
[cvtos, cvdos] = cvload(filename, restoretotal)

Description The cvload command loads into memory the coverage tests and results
stored in a file by the cvsave command.

[cvtos, cvdos] = cvload(filename) loads the tests and data stored
in the text file filename.cvt. The cvtest objects that are successfully
loaded are returned in cvtos, a cell array of cvtest objects. The cvdata
objects that are successfully loaded are returned in cvdos, a cell array
of cvdata objects. cvdos has the same size as ctvos, but can contain
empty elements if a particular test has no results.

[cvtos, cvdos] = cvload(filename, restoretotal) restores
the cumulative results from prior runs if restoretotal is 1. If
restoretotal is unspecified or 0, the model’s cumulative results are
cleared.

cvload Special Considerations

The following are some special considerations for using the cvload
command:

• If a model with the same name exists in the coverage database, only
the compatible results that reference the existing model are loaded to
prevent duplication.

• If the Simulink models referenced from the file are open but do not
exist in the coverage database, the coverage tool resolves the links to
the existing models.

• When you are loading several files that reference the same model,
only the results that are consistent with the earlier files are loaded.

8-12

cvmodelview

Purpose Display model coverage results with model coloring

Syntax cvmodelview(cvdo)

Description cvmodelview(cvdo) displays coverage results from the cvdata object
cvdo by coloring the Simulink model (see “Displaying Model Coverage
with Model Coloring” on page 5-48).

Example The following commands open the slvnvdemo_cv_small_controller
demo model, create the test specification object testObj, and execute
testObj.

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
data = cvsim(testObj)

Afterward, issue the following command to display the model coverage
results by coloring the block diagram.

cvmodelview(data)

8-13

cvsave

Purpose Save coverage tests and results to file

Syntax cvsave(filename, model)
cvsave(filename, cvto1, cvto2, ...)
cvsave(filename, cvdo1, cvdo2, ...)

Description Save the coverage tests and results from simulations to a file with the
function cvsave.

cvsave(filename, model) saves all the tests (cvtest objects) and
results (cvdata objects) in memory related to the model model in the
text file filename.cvt.

cvsave(filename, cvto1, cvto2, ...) saves the tests in the
cvtest objects cvto1, cvto2, ... in the text file filename.cvt.
Information about the referenced models is also saved.

cvsave(filename, cvdo1, cvdo2, ...) saves the tests, test results,
and referenced models’ structure for cvdata objects cvdo1, cvdo2, ... to
the text file filename.cvt.

8-14

cvsim

Purpose Simulate and return model coverage results for test objects

Syntax cvdo = cvsim(cvto)
[cvdo,t,x,y] = cvsim(cvto)
[cvdo,t,x,y] = cvsim(cvto, timespan, options)
[cvdo,t,x,y] = cvsim(cvto, label, setupcmd)
[cvdo1, cvdo2, ...] = cvsim(cvto1, cvto2, ...)

Description You simulate a test specification object (a cvtest object) with the cvsim
command.

Note You do not have to enable model coverage reporting for the model
to use the cvsim command.

cvdo = cvsim(cvto) executes the cvtest object cvto by starting a
simulation run for the corresponding model. The results are returned
in the cvdata object cvdo. But when recording coverage for multiple
models in a hierarchy, cvsim returns its results in a cv.cvdatagroup
object.

[cvdo,t,x,y] = cvsim(cvto) returns the time vector t, matrix of
state values x, and matrix of output values y from the simulation. Refer
to the sim command in the Simulink documentation for descriptions of
the parameters t, x, and y.

[cvdo,t,x,y] = cvsim(cvto, timespan, options) returns the time
vector t, matrix of state values x, and matrix of output values y from
the simulation, and overrides default simulation values with the values
for timespan and options. Refer to the sim command in the Simulink
Reference for descriptions of the parameters t, x, y, timespan, and
options.

[cvdo,t,x,y] = cvsim(cvto, label, setupcmd) creates the cvtest
object cvto and simulates it in one command. The arguments label
and setupcmd are passed directly to the cvtest command, which
creates the cvtest object cvto.

8-15

cvsim

[cvdo1, cvdo2, ...] = cvsim(cvto1, cvto2, ...) executes the
cvtest objects cvto1, cvto2, ... and returns the results in the set of
cvdata objects cvdo1, cvdo2,

8-16

cvsimref

Purpose Simulate and return model coverage results for referenced models

Syntax cvdg = cvsimref(topModelName)
cvdg = cvsimref(topModelName, cvtg)
[cvdg,t,x,y] = cvsimref(topModelName, cvtg)
[cvdg,t,x,y] = cvsimref(topModelName, cvtg, timespan,

options)
[cvdg1, cvdg2, ...] = cvsimref(topModelName, cvtg1, cvtg2,

...)

Description Use the cvsimref function to record coverage for referenced models
in a hierarchy. For more information, see “Using Model Coverage
Commands for Referenced Models” on page 5-59.

Note You do not have to enable model coverage reporting for any of the
models in a model hierarchy to use the cvsimref command.

cvdg = cvsimref(topModelName) simulates the top model that
topModelName specifies, collects model coverage data, and returns the
results in the cv.cvdatagroup object cvdg.

cvdg = cvsimref(topModelName, cvtg) executes the cv.cvtestgroup
object cvtg by starting a simulation run for the corresponding top
model, topModelName. The results are returned in the cv.cvdatagroup
object cvdg.

[cvdg,t,x,y] = cvsimref(topModelName, cvtg) returns the time
vector t, matrix of state values x, and matrix of output values y from
the simulation. Refer to the sim function in the Simulink Reference for
descriptions of the parameters t, x, and y.

[cvdg,t,x,y] = cvsimref(topModelName, cvtg, timespan,
options) returns the time vector t, matrix of state values x, and matrix
of output values y from the simulation, and overrides default simulation
values with the values for timespan and options. Refer to the sim

8-17

cvsimref

function in the Simulink Reference for descriptions of the parameters
t, x, y, timespan, and options.

[cvdg1, cvdg2, ...] = cvsimref(topModelName, cvtg1, cvtg2,
...) executes the cv.cvtestgroup objects cvtg1, cvtg2, ... and
returns the results in the set of cv.cvdatagroup objects cdvg1, cvdg2,
....

See Also cv.cvdatagroup, cv.cvtestgroup

8-18

cvtest

Purpose Create model coverage test specification object

Syntax cvto = cvtest(root)
cvto = cvtest(root, label)
cvto = cvtest(root, label, setupcmd)

Description The cvtest command creates a test specification object, that you
simulate with the cvsim command.

cvto = cvtest(root) creates a test object with the handle cvto. root
is the name of, or a handle to, a Simulink model or a subsystem of a
model. Only the specified model or subsystem and its descendants are
subject to model coverage testing.

cvto = cvtest(root, label) creates a test object with the label
label, which is used for reporting results.

cvto = cvtest(root, label, setupcmd) creates a test object with
the setup command setupcmd and labels it with label. The setup
command is executed in the base MATLAB workspace just prior to
running the instrumented simulation. This command is useful for
loading data prior to a test.

A test object has the following structure.

Field Description

id Read-only internal
data-dictionary ID

modelcov Read-only internal
data-dictionary ID

rootPath Name of the system or subsystem
instrumented for analysis

label String used when reporting
results

setupCmd Command executed in the base
workspace just prior to simulation

8-19

cvtest

Field Description

settings.condition Set to 1 if condition coverage is
desired

settings.decision Set to 1 if decision coverage is
desired

settings.mcdc Set to 1 if MC/DC coverage is
desired

settings.sigrange Set to 1 if signal range coverage
is desired

settings.tableExec Set to 1 if lookup table coverage
is desired

modelRefSettings.enable String specifying one of the
following values:

• Off— Disables coverage for all
referenced models

• all— Enables coverage for all
referenced models

• filtered— Enables coverage
only for referenced models not
listed in the excludedModels
subfield

modelRefSettings.exclude-
TopModel

Set to 1 if excluding coverage for
the top model is desired

modelRefSettings.excluded-
Models

String specifying a
comma-separated list of
referenced models for which
coverage is disabled

8-20

decisioninfo

Purpose Display decision coverage information for model object

Syntax coverage = decisioninfo(cvdo, object)
coverage = decisioninfo(cvdo, object, ignore_descendants)
[coverage, description] = decisioninfo(cvdo, object)

Description coverage = decisioninfo(cvdo, object) returns decision coverage
results from the cvdata object cvdo for the model component specified
by object. See “Specifying a Model Object” on page 8-22 for more
information about the object argument. The value of coverage is a
two-element vector of form [covered_outcomes total_outcomes], the
elements of which are defined as follows:

• covered_outcomes— the number of decision outcomes satisfied for
object

• total_outcomes— the total number of decision outcomes for object

Note coverage is empty if cvdo does not contain decision coverage
results for object.

coverage = decisioninfo(cvdo, object, ignore_descendants)
returns decision coverage results for object, ignoring the coverage of
its descendent objects if ignore_descendants is true (i.e., 1).

[coverage, description] = decisioninfo(cvdo, object) returns
decision coverage results and textual descriptions of decision points
associated with object. description is a structure array containing
the following fields:

• decision.text— string describing a decision point, e.g., 'U > LL'

• decision.outcome.text— string describing a decision outcome, i.e.,
'true' or 'false'

• decision.outcome.executionCount— number of times a decision
outcome occurred in a simulation

8-21

decisioninfo

Specifying a Model Object

The object argument specifies an object in the Simulink model or
Stateflow diagram that received decision coverage. Valid values for
object include the following:

Object Specification Description

BlockPath Full path to a Simulink model or
block

BlockHandle Handle to a Simulink model or
block

slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a

Stateflow block and the ID of an
object contained in that chart

{BlockPath, sfObj} Cell array with the path to a
Stateflow block and a Stateflow
object API handle contained in
that chart

[BlockHandle, sfID] Array with a Stateflow block
handle and the ID of an object
contained in that chart

Example The following commands open the slvnvdemo_cv_small_controller
demo model, create the test specification object testObj, enable decision
coverage for testObj, and execute testObj.

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
testObj.settings.decision = 1;

8-22

decisioninfo

data = cvsim(testObj)

Afterward, issue the following commands to retrieve the decision
coverage results for the Saturation block and determine its percentage
of decision outcomes covered.

blk_handle = get_param([mdl, '/Saturation'], 'Handle');
cov = decisioninfo(data, blk_handle)
percent_cov = 100 * cov(1) / cov(2)

See Also conditioninfo, mcdcinfo

8-23

mcdcinfo

Purpose Display modified condition/decision coverage information for model
object

Syntax coverage = mcdcinfo(cvdo, object)
coverage = mcdcinfo(cvdo, object, ignore_descendants)
[coverage, description] = mcdcinfo(cvdo, object)

Description coverage = mcdcinfo(cvdo, object) returns modified
condition/decision coverage results from the cvdata object cvdo for the
model component specified by object. See “Specifying a Model Object”
on page 8-25 for more information about the object argument. The
value of coverage is a two-element vector of form [covered_outcomes
total_outcomes], the elements of which are defined as follows:

• covered_outcomes — the number of condition/decision outcomes
satisfied for object

• total_outcomes— the total number of condition/decision outcomes
for object

Note coverage is empty if cvdo does not contain modified
condition/decision coverage results for object.

coverage = mcdcinfo(cvdo, object, ignore_descendants)
returns modified condition/decision coverage results for object,
ignoring the coverage of its descendent objects if ignore_descendants
is true (i.e., 1).

[coverage, description] = mcdcinfo(cvdo, object) returns
modified condition/decision coverage results and textual descriptions
of each condition/decision in object. description is a structure array
containing the following fields:

• text— string denoting whether the condition/decision is associated
with a block output or Stateflow transition

8-24

mcdcinfo

• condition.text — string describing a condition/decision or the
block port to which it applies

• condition.achieved— logical array indicating whether a condition
case has been fully covered

• condition.trueRslt — string representing a condition case
expression that produces a true result

• condition.falseRslt — string representing a condition case
expression that produces a false result

See “MC/DC Analysis Table” on page 5-31 for more information about
the data contained in these fields.

Specifying a Model Object

The object argument specifies an object in the Simulink model or
Stateflow diagram that received decision coverage. Valid values for
object include the following:

Object Specification Description

BlockPath Full path to a Simulink model or
block

BlockHandle Handle to a Simulink model or
block

slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a

Stateflow block and the ID of an
object contained in that chart

8-25

mcdcinfo

Object Specification Description

{BlockPath, sfObj} Cell array with the path to a
Stateflow block and a Stateflow
object API handle contained in
that chart

[BlockHandle, sfID] Array with a Stateflow block
handle and the ID of an object
contained in that chart

Example The following commands open the slvnvdemo_cv_small_controller
demo model, create the test specification object testObj, enable
modified condition/decision coverage for testObj, and execute testObj.

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
testObj.settings.mcdc = 1;
data = cvsim(testObj)

Afterward, issue the following commands to retrieve the modified
condition/decision coverage results for the Logic block (in the Gain
subsystem) and determine its percentage of condition/decision outcomes
covered.

blk_handle = get_param([mdl, '/Gain/Logic'], 'Handle');
cov = mcdcinfo(data, blk_handle)
percent_cov = 100 * cov(1) / cov(2)

See Also conditioninfo, decisioninfo

8-26

ModelAdvisor.Action

Purpose Add actions to custom checks

Class
Description

You define actions to take when Model Advisor checks do not pass.
Users access actions by clicking the action button that you define in
the Model Advisor window.

Syntax

action_obj = ModelAdvisor.Action

Arguments

action_obj
A variable representing the action object you create.

Method
Summary

Name Description

“setCallbackFcn” on page 8-27 Specify action callback
function

Methods setCallbackFcn
Purpose

Specify action callback function
Syntax
action_obj.setCallbackFcn(@handle)

Arguments
action_obj

A variable representing the action object.

handle
A handle to an action callback function.

Description
The setCallbackFcn method specifies the callback function to use with
the action object.

8-27

ModelAdvisor.Action

See Also
“Action Callback Function” on page 6-34 in the Simulink® Verification
and Validation™ User’s Guide on page 1

Example
Note The following example is a fragment of code from the
sl_customization.m file for the demo model slvnvdemo_mdladv. The
example does not execute as shown without the additional content
found in the sl_customization.m file.

See “Demo and Code Example” on page 6-6 in the Simulink® Verification
and Validation™ User’s Guide on page 1 for more information.

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

% define action (fix) operation

myAction = ModelAdvisor.Action;

%Specify a callback function for the action

myAction.setCallbackFcn(@sampleActionCB);

myAction.Name='Fix block fonts';

myAction.Description=...

'Click the button to update all blocks with specified font';

rec.setAction(myAction);

See Also • ModelAdvisor.Check

• “Defining Check Actions” on page 6-33 in the Simulink® Verification
and Validation™ User’s Guide on page 1

• “setActionEnable” in the Simulink User’s Guide.

8-28

ModelAdvisor.Check

Purpose Create custom checks

Class
Description

The ModelAdvisor.Check class creates a Model Advisor check
object. All checks must have an associated ModelAdvisor.Task or
ModelAdvisor.Root object to appear in the Model Advisor tree.

You can use one ModelAdvisor.Check object in multiple
ModelAdvisor.Task objects, allowing you to place the same check in
multiple locations in the Model Advisor tree. For example, Check for
implicit signal resolution appears in the By Product > Simulink
folder and in the By Task > Model Referencing folder in the Model
Advisor tree.

Syntax

check_obj = ModelAdvisor.Check(check_ID)

Arguments

check_obj
A variable representing the check object you create.

check_ID
A string that uniquely identifies the check. The value of check_ID
must remain constant.

Method
Summary

Name Description

“getID” on page 8-30 Returns the check ID
“setAction” on page 8-31 Specify action
“setCallbackFcn” on page 8-32 Specify callback function
“setInputParameters” on page 8-33 Specify input parameters
“setInputParametersLayoutGrid” on
page 8-34

Specify layout grid for input
parameters

8-29

ModelAdvisor.Check

Methods getID
Purpose
Returns the check ID
Syntax
id = check_obj.getID

Arguments
check_obj

A variable representing the check object.

Return Values
id

A unique string identifying the check.

Description
The getID method returns a string that uniquely identifies the check.
You create this unique identifier when you create the check. This is the
equivalent of the ModelAdvisor.Check ID property.
See Also
“Properties of Custom Checks” on page 6-17 in the Simulink®
Verification and Validation™ User’s Guide on page 1

8-30

ModelAdvisor.Check

setAction
Purpose
Specify action
Syntax
check_obj.setAction(action_obj)

Arguments
check_obj

A variable representing the check object.

action_obj
The ModelAdvisor.Action object to use in the check.

Description
The setAction method identifies the action you want to use in a check.
See Also
ModelAdvisor.Action

8-31

ModelAdvisor.Check

setCallbackFcn
Purpose
Specify callback function
Syntax
check_obj.setCallbackFcn(@handle, context, style)

Arguments
check_obj

A variable representing the check object.

handle
A handle to a check callback function.

context
Context for checking the model or subsystem.

• None — No special requirements.

• PostCompile — The model must be compiled.

style
Type of callback function:

• StyleOne — Simple check callback function

• StyleTwo — Detailed check callback function

• StyleThree — Check callback function with hyperlinked
results

Description
Specify the callback function to use with the check object.
See Also
“Creating Callback Functions for Checks” on page 6-10 in the Simulink®
Verification and Validation™ User’s Guide on page 1

8-32

ModelAdvisor.Check

setInputParameters
Purpose
Specify input parameters
Syntax
check_obj.setInputParameters(params)

Arguments
check_obj

A variable representing the check object.

params
A cell array of ModelAdvisor.InputParameter objects.

Description
Specify the input parameters to use in a check object.
See Also
ModelAdvisor.InputParameter

8-33

ModelAdvisor.Check

setInputParametersLayoutGrid
Purpose
Specify layout grid for input parameters
Syntax
check_obj.setInputParametersLayoutGrid([row col])

Arguments
check_obj

A variable representing the check object.

row
Total number of rows in the layout grid.

col
Total number of columns in the layout grid.

Description
Specify the layout grid for input parameters in the Model Advisor. Use
this method if there are multiple input parameters.
See Also
• ModelAdvisor.InputParameter

• “setColSpan” on page 8-46

• “setRowSpan” on page 8-47

Example
Note The following example is a fragment of code from the
sl_customization.m file for the demo model slvnvdemo_mdladv. The
example does not execute as shown without the additional content
found in the sl_customization.m file.

See “Demo and Code Example” on page 6-6 in the Simulink® Verification
and Validation™ User’s Guide on page 1 for more information.

8-34

ModelAdvisor.Check

%Define a check

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

rec.Title = 'Check Simulink block font';

rec.TitleTips = 'Example style three callback';

rec.setCallbackFcn(@SampleStyleThreeCallback,'None','StyleThree');

% Define input parameters

rec.setInputParametersLayoutGrid([3 2]);

inputParam1 = ModelAdvisor.InputParameter;

inputParam1.Name = 'Skip font checks.';

inputParam2.Name = 'Standard font size';

inputParam2 = ModelAdvisor.InputParameter;

inputParam3.Name='Valid font';

inputParam3 = ModelAdvisor.InputParameter;

rec.setInputParameters({inputParam1,inputParam2,inputParam3});

% define action (fix) operation

myAction = ModelAdvisor.Action;

rec.setAction(myAction);

See Also • “Defining Custom Checks” on page 6-17 in the Simulink® Verification
and Validation™ User’s Guide on page 1

• ModelAdvisor.Action

• ModelAdvisor.InputParameter

• ModelAdvisor.ListViewParameter

• ModelAdvisor.Root

• ModelAdvisor.Task

• “setCheckErrorSeverity” in the Simulink User’s Guide.

8-35

ModelAdvisor.FactoryGroup

Purpose Define group in By Task folder

Class
Description

The ModelAdvisor.FactoryGroup class defines a new subfolder to add
to the By Task folder.

Syntax

fg_obj = ModelAdvisor.FactoryGroup(fg_ID)

Arguments

fg_obj
A variable representing the factory group object you are creating.

fg_ID
A unique string that identifies the group. The value of fg_ID
must remain constant.

Method
Summary

Name Description

“addCheck” on page 8-37 Add check to group

8-36

ModelAdvisor.FactoryGroup

Methods addCheck
Purpose

Add check to group
Syntax
fg_obj.addCheck(check_ID)

Arguments
fg_obj

A variable representing the factory group object.

check_ID
The unique identification string representing the check to add.

Description
The addCheck method adds checks, identified by check_ID, to the folder
specified by the group object.
See Also
ModelAdvisor.Check

Example
Note The following example is a fragment of code from the
sl_customization.m file for the demo model slvnvdemo_mdladv. The
example does not execute as shown without the additional content
found in the sl_customization.m file.

See “Demo and Code Example” on page 6-6 in the Simulink® Verification
and Validation™ User’s Guide on page 1 for more information.

8-37

ModelAdvisor.FactoryGroup

function defineModelAdvisorTasks

mdladvRoot = ModelAdvisor.Root;

% --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

rec.DisplayName='Demo Factory Group';

rec.Description='Demo Factory Group';

rec.addCheck('com.mathworks.sample.Check1');

rec.addCheck('com.mathworks.sample.Check2');

rec.addCheck('com.mathworks.sample.Check3');

mdladvRoot.publish(rec); % publish inside By Task

See Also • “Defining Custom Groups” on page 6-41 in the Simulink® Verification
and Validation™ User’s Guide on page 1

• ModelAdvisor.Check

• ModelAdvisor.Root

8-38

ModelAdvisor.Group

Purpose Define custom groups

Class
Description

The ModelAdvisor.Group class defines a group that appears as a
folder in the Model Advisor tree. Use groups to consolidate checks by
functionality or usage.

Syntax

group_obj = ModelAdvisor.Group(group_ID)

Arguments

group_obj
A variable representing the group object you create.

group_ID
A string that uniquely identifies the group. The value of group_ID
must remain constant.

Method
Summary

Name Description

“addGroup” on page 8-40 Add subgroup to group
“addTask” on page 8-41 Add task to group

8-39

ModelAdvisor.Group

Methods addGroup
Purpose
Add subgroup to group
Syntax
group_obj.addGroup(child_obj)

Arguments
group_obj

A variable representing the group object.

child_obj
The unique identifying string that represents the
ModelAdvisor.Group object of the subgroup.

Description
The addGroup method adds a new subfolder, identified by child_obj, to
the folder specified by the group object.

8-40

ModelAdvisor.Group

addTask
Purpose
Add task to group
Syntax
group_obj.addTask(task_obj)

Arguments
group_obj

A variable representing the group object.

task_obj
The unique identifying string that represents the
ModelAdvisor.Task object.

Description
The addTask method adds a new check, identified by task_obj, to the
folder specified by the group object.
See Also
ModelAdvisor.Task

Example
Note The following example is a fragment of code from the
sl_customization.m file for the demo model slvnvdemo_mdladv. The
example does not execute as shown without the additional content
found in the sl_customization.m file.

See “Demo and Code Example” on page 6-6 in the Simulink® Verification
and Validation™ User’s Guide on page 1 for more information.

MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');

MAG.DisplayName='My Group';

MAG.addTask(MAT1);

MAG.addTask(MAT2);

MAG.addTask(MAT3);

mdladvRoot.publish(MAG); % publish under Model Advisor Task Manager

8-41

ModelAdvisor.Group

See Also • “Defining Custom Groups” on page 6-41 in the Simulink® Verification
and Validation™ User’s Guide on page 1

• ModelAdvisor.Task

8-42

ModelAdvisor.Image

Purpose Include image in Model Advisor output

Syntax object = ModelAdvisor.Image

Arguments object
A variable representing the image object created.

Description Specify an image to appear in the Model Advisor output. Model Advisor
supports many image formats, including but not limited to JPG, BMP,
and GIF.

Method
Summary

Name Description

“setHyperlink” on page 8-43 Specify hyperlink location
“setImageSource” on page 8-43 Specify image location

Methods setHyperlink
Purpose
Specify hyperlink location
Syntax
setHyperlink(url)

Arguments
url

A string that specifies the location of the link.

Description
Specifies the location of the hyperlink.

setImageSource
Purpose
Specify image location
Syntax
setImageSource(source)

8-43

ModelAdvisor.Image

Arguments
source

A string specifying the location of the image.

Description
Specifies the location of the image.

Example report_image = ModelAdvisor.Image;

report_image = ModelAdvisor.Image;

report_image.setImageSource(...

'http://www.mathworks.com/access/helpdesk/help/techdoc/learn_matlab/p09.gif');

See Also ModelAdvisor.LineBreak, ModelAdvisor.List,
ModelAdvisor.Paragraph, ModelAdvisor.Table, ModelAdvisor.Text

8-44

ModelAdvisor.InputParameter

Purpose Add input parameters to custom checks

Class
Description

You specify the input parameters a custom check uses in analyzing the
model. Users access input parameters in the Model Advisor window.

Syntax

input_param = ModelAdvisor.InputParameter

Arguments

input_param
A variable representing the input parameter object you create.

Method
Summary

Name Description

“setColSpan” on page 8-46 Specify columns parameter
occupies

“setRowSpan” on page 8-47 Specify rows parameter
occupies

8-45

ModelAdvisor.InputParameter

Methods setColSpan
Purpose
Specify columns parameter occupies
Syntax
input_param.setColSpan([start_col end_col])

Arguments
input_param

A variable representing the input parameter object.

start_col
A positive integer representing the first column the input
parameter occupies in the layout grid.

end_col
A positive integer representing the last column the input
parameter occupies in the layout grid.

Description
Specify the number of columns the parameter occupies. Use this method
to specify where an input parameter is located in the layout grid when
there are multiple input parameters.
See Also
“setInputParametersLayoutGrid” on page 8-34

8-46

ModelAdvisor.InputParameter

setRowSpan
Purpose
Specify rows parameter occupies
Syntax
input_param.setRowSpan([start_row end_row])

Arguments
input_param

A variable representing the input parameter object.

start_row
A positive integer representing the first row the input parameter
occupies in the layout grid.

end_row
A positive integer representing the last row the input parameter
occupies in the layout grid.

Description
Specify the number of rows the parameter occupies. Use this method
to specify where an input parameter is located in the layout grid when
there are multiple input parameters.
See Also
“setInputParametersLayoutGrid” on page 8-34

Example
Note The following example is a fragment of code from the
sl_customization.m file for the demo model slvnvdemo_mdladv. The
example does not execute as shown without the additional content
found in the sl_customization.m file.

See “Demo and Code Example” on page 6-6 in the Simulink® Verification
and Validation™ User’s Guide on page 1 for more information.

8-47

ModelAdvisor.InputParameter

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

rec.setInputParametersLayoutGrid([3 2]);

% define input parameters

inputParam1 = ModelAdvisor.InputParameter;

inputParam1.Name = 'Skip font checks.';

inputParam1.Type = 'Bool';

inputParam1.Value = false;

inputParam1.Description = 'sample tooltip';

inputParam1.setRowSpan([1 1]);

inputParam1.setColSpan([1 1]);

inputParam2 = ModelAdvisor.InputParameter;

inputParam2.Name = 'Standard font size';

inputParam2.Value='12';

inputParam2.Type='String';

inputParam2.Description='sample tooltip';

inputParam2.setRowSpan([2 2]);

inputParam2.setColSpan([1 1]);

inputParam3 = ModelAdvisor.InputParameter;

inputParam3.Name='Valid font';

inputParam3.Type='Combobox';

inputParam3.Description='sample tooltip';

inputParam3.Entries={'Arial', 'Arial Black'};

inputParam3.setRowSpan([2 2]);

inputParam3.setColSpan([2 2]);

rec.setInputParameters({inputParam1,inputParam2,inputParam3});

See Also • “Defining Check Input Parameters” on page 6-26 in the Simulink®
Verification and Validation™ User’s Guide on page 1

• ModelAdvisor.Check

• “getInputParameters” in the Simulink User’s Guide.

8-48

ModelAdvisor.LineBreak

Purpose Insert line break

Syntax line_break_obj = ModelAdvisor.LineBreak

Arguments line_break_obj
A variable representing the line break object created.

Description Use instances of this class to insert line breaks in Model Advisor
outputs.

Example report_paragraph = ModelAdvisor.Paragraph;
report_text = ModelAdvisor.Text('Model Advisor', {'bold'});
report_text.setItalic(true);

report_text2 = ModelAdvisor.Text('Check Report', {'bold'});

line_break = ModelAdvisor.LineBreak;

report_paragraph.addItem([report_text line_break report_text2]);

See Also ModelAdvisor.Image, ModelAdvisor.List, ModelAdvisor.Paragraph,
ModelAdvisor.Table, ModelAdvisor.Text

8-49

ModelAdvisor.List

Purpose Create list class

Syntax list = ModelAdvisor.List

Arguments list
A variable representing the list object created.

Description Use instances of this class to create list formatted outputs. Creates a
new list object.

Method
Summary

Name Description

“addItem” on page 8-50 Add list item
“setType” on page 8-50 Specify list type

Methods addItem
Purpose

Add list item
Syntax
addItem(element)

Arguments
element

Element, cell array of elements, or string to be added. When a cell
array of elements is added, they form different rows in the list.

Description
This method adds items to the list.

setType
Purpose
Specify list type
Syntax
setType(listType)

8-50

ModelAdvisor.List

Arguments
listType

String specifying type of list, either numbered or bulleted.

Description
This method specifies the type of list created.

Example subList = ModelAdvisor.List();

subList.setType('numbered')

subList.addItem(ModelAdvisor.Text('Sub entry 1', {'pass','bold'}));

subList.addItem(ModelAdvisor.Text('Sub entry 2', {'pass','bold'}));

topList = ModelAdvisor.List();

topList.addItem([ModelAdvisor.Text('Entry level 1',{'keyword','bold'}), subList]);

topList.addItem([ModelAdvisor.Text('Entry level 2',{'keyword','bold'}), subList]);

See Also ModelAdvisor.Image, ModelAdvisor.LineBreak,
ModelAdvisor.Paragraph, ModelAdvisor.Table, ModelAdvisor.Text

8-51

ModelAdvisor.ListViewParameter

Purpose Add list view parameters to custom checks

Class
Description

The Model Advisor uses list view parameters to populate the Model
Advisor Result Explorer. Users access the information provided in list
views by clicking the Explore Result button in the Model Advisor
window.

Syntax

lv_param = ModelAdvisor.ListViewParameter

Arguments

lv_param
A variable representing the list view parameter object you create.

Example
Note The following example is a fragment of code from the
sl_customization.m file for the demo model slvnvdemo_mdladv. The
example does not execute as shown without the additional content
found in the sl_customization.m file.

See “Demo and Code Example” on page 6-6 in the Simulink® Verification
and Validation™ User’s Guide on page 1 for more information.

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

mdladvObj.setCheckResultStatus(true);

% define list view parameters

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter

myLVParam.Data = get_param(searchResult,'object')';

myLVParam.Attributes = {'FontName'}; % name is default property

mdladvObj.setListViewParameters({myLVParam});

See Also • ModelAdvisor.Check

• “Batch-Fixing Warnings or Failures” in the Simulink User’s Guide.

8-52

ModelAdvisor.ListViewParameter

• “Defining Check List Views” on page 6-31 in the Simulink®
Verification and Validation™ User’s Guide on page 1

• “getListViewParameters” in the Simulink User’s Guide.

• “setListViewParameters” in the Simulink User’s Guide.

8-53

ModelAdvisor.Paragraph

Purpose Create and format paragraph

Syntax para_obj = ModelAdvisor.Paragraph

Arguments para_obj
A variable representing the paragraph object created.

Description Creates and formats a paragraph.

Method
Summary

Name Description

“setAlign” on page 8-54 Specify paragraph alignment
“addItem” on page 8-55 Add paragraph element

Methods setAlign
Purpose
Specify paragraph alignment
Syntax
setAlign(alignment)

Arguments
alignment

A string that specifies the alignment of the text. Possible
alignments include:

left
Align left

right
Align right

center
Align center

Description
Specifies the paragraph alignment. The default is left.

8-54

ModelAdvisor.Paragraph

addItem
Purpose
Add paragraph element
Syntax
addItem(element)

Arguments
element

A string, element, or cell array of elements to add to the
paragraph.

Description
Adds an element to the paragraph.

Example report_paragraph = ModelAdvisor.Paragraph;

report_paragraph.setAlign('center');

report_text = ModelAdvisor.Text('Magic Square', {'bold'});

report_text.setItalic(true);

report_image = ModelAdvisor.Image;

report_image = ModelAdvisor.Image; report_image.setImageSource(...

'http://www.mathworks.com/access/helpdesk/help/techdoc/learn_matlab/p09.gif');

line_break = ModelAdvisor.LineBreak;

report_paragraph.addItem([report_text line_break line_break report_image]);

See Also ModelAdvisor.Image, ModelAdvisor.LineBreak, ModelAdvisor.List,
ModelAdvisor.Table, ModelAdvisor.Text

8-55

ModelAdvisor.Root

Purpose Identify root node

Class
Description

The ModelAdvisor.Root class returns the root object.

Syntax

MAobj = ModelAdvisor.Root

Arguments

MAobj
A variable representing the root object.

Method
Summary

Name Description

“register” on page 8-57 Register object in Model
Advisor root

“publish” on page 8-58 Publish object in Model
Advisor root

8-56

ModelAdvisor.Root

Methods register
Purpose
Register object in Model Advisor root
Syntax
MAobj.register(obj)

Arguments
MAobj

A variable representing the root object.

obj
A variable representing the object to register.

Description
The register method registers ModelAdvisor.Check,
ModelAdvisor.Task, ModelAdvisor.Group, and
ModelAdvisor.FactoryGroup objects in the Model Advisor memory.

Use the register method to place objects in the Model Advisor memory
that you use in other functions. The register method does not place
object in the Model Advisor tree.
See Also
• ModelAdvisor.Check

• ModelAdvisor.FactoryGroup

• ModelAdvisor.Group

• ModelAdvisor.Task

8-57

ModelAdvisor.Root

publish
Purpose
Publish object in Model Advisor root
Syntax
MAobj.publish(check_obj, location)

MAobj.publish(group_obj)

MAobj.publish(fg_obj)

Arguments
MAobj

A variable representing the root object.

check_obj
A variable representing the ModelAdvisor.Check object to
publish.

location
A string identifying where the Model Advisor places the check
in the Model Advisor tree. The location is either one of the
subfolders in the By Product folder, or the name of a new
subfolder to put in the By Product folder. Use a pipe-delimited
string to indicate multiple subfolders. For example, to add a check
to the Simulink Verification and Validation > Modeling
Standards folder, use the following string: 'Simulink
Verification and Validation|Modeling Standards'.

group_obj
A variable representing the ModelAdvisor.Group object to
publish as a folder in theModel Advisor Task Manager folder.

fg_obj
A variable representing the ModelAdvisor.FactoryGroup object
to publish as a subfolder in the By Task folder.

Description
The publish method places objects in the Model Advisor tree. The
location in the tree depends on the type of object. When you publish an
object, you do not have to register it.

8-58

ModelAdvisor.Root

See Also
• “Defining Where Custom Checks Appear” on page 6-22 in the
Simulink® Verification and Validation™ User’s Guide on page 1

• “Defining Where Tasks Appear” on page 6-40 in the Simulink®
Verification and Validation™ User’s Guide on page 1

• “Defining Where Custom Groups Appear” on page 6-41 in the
Simulink® Verification and Validation™ User’s Guide on page 1

• ModelAdvisor.Check

• ModelAdvisor.FactoryGroup

• ModelAdvisor.Group

Example
Note The following example is a fragment of code from the
sl_customization.m file for the demo model slvnvdemo_mdladv. The
example does not execute as shown without the additional content
found in the sl_customization.m file.

See “Demo and Code Example” on page 6-6 in the Simulink® Verification
and Validation™ User’s Guide on page 1 for more information.

function defineTaskAdvisor

mdladvRoot = ModelAdvisor.Root;

MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

MAT1.DisplayName='Example task with input parameter and auto-fix ability';

MAT1.setCheck('com.mathworks.sample.Check1');

mdladvRoot.register(MAT1);

MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');

MAT2.DisplayName='Example task 2';

MAT2.setCheck('com.mathworks.sample.Check2');

mdladvRoot.register(MAT2);

8-59

ModelAdvisor.Root

MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');

MAT3.DisplayName='Example task 3';

MAT3.setCheck('com.mathworks.sample.Check3');

mdladvRoot.register(MAT3);

MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');

MAG.DisplayName='My Group';

MAG.addTask(MAT1);

MAG.addTask(MAT2);

MAG.addTask(MAT3);

mdladvRoot.publish(MAG); % publish under Model Advisor Task Manager

See Also • “Registering Custom Checks, Tasks, and Groups” on page 6-7 in the
Simulink® Verification and Validation™ User’s Guide on page 1

• ModelAdvisor.Check

• ModelAdvisor.FactoryGroup

• ModelAdvisor.Group

• ModelAdvisor.Task

8-60

ModelAdvisor.Table

Purpose Create table class

Syntax table = ModelAdvisor.Table(row, column)

Arguments table
A variable representing the table object created.

row
An integer specifying the number of rows the table contains.

column
An integer specifying the number of columns the table contains.

Description Use instances of this class to create and format a table. Specify the
number of rows and columns in a table, excluding the table title and
table heading row.

Method
Summary

Name Description

“getEntry” on page 8-62 Get cell contents
“setColHeading” on page 8-62 Specify table column title
“setColHeadingAlign” on page 8-63 Specify column title

alignment
“setColWidth” on page 8-63 Specify column widths
“setEntry” on page 8-64 Add cell to table
“setEntryAlign” on page 8-64 Specify cell alignment
“setHeading” on page 8-65 Specify table title
“setHeadingAlign” on page 8-66 Specify table title alignment
“setRowHeading” on page 8-66 Specify table row title
“setRowHeadingAlign” on page 8-67 Specify row title alignment

8-61

ModelAdvisor.Table

Methods getEntry
Purpose
Get cell contents
Syntax
content = getEntry(row, column)

Arguments
row

An integer specifying the row.

column
An integer specifying the column.

content
An element object or object array specifying the content of the
table entries.

Description
Gets the contents of a specified cell.

setColHeading
Purpose
Specify table column title
Syntax
setColHeading(column, heading)

Arguments
column

An integer specifying column number.

heading
A string, element object, or object array specifying the table
column title.

Description
Specifies the table column title.

8-62

ModelAdvisor.Table

setColHeadingAlign
Purpose
Specify column title alignment
Syntax
setColHeadingAlign(column, alignment)

Arguments
column

An integer specifying column number.

alignment
A string specifying the cell alignment. Possible values are:

left
Align left

right
Align right

center
Align center

Description
Specifies the alignment of the column headings.

setColWidth
Purpose
Specify column widths
Syntax
setColWidth(column, width)

Arguments
column

An integer specifying column number.

width
An integer or array of integers specifying the column widths,
relative to the entire table width.

8-63

ModelAdvisor.Table

Description
Specifies the table column widths relative to the entire table width. If
column widths are [1 2 3], the second column is twice the width of the
first column, and the third column is three times the width of the first
column. Unspecified columns have a default width of 1. For example:

setColWidth(1, 1);
setColWidth(3, 2);

specifies [1 1 2] column widths.

setEntry
Purpose
Add cell to table
Syntax
setEntry(row, column, string)

setEntry(row, column, content)

Arguments
row

An integer specifying the row.

column
An integer specifying the column.

string
A string representing the contents of the entry

content
An element object or object array specifying the content of the
table entries.

Description
Add a cell entry to a table.

setEntryAlign
Purpose
Specify cell alignment

8-64

ModelAdvisor.Table

Syntax
setEntryAlign(row, column, alignment)

Arguments
row

An integer specifying row number.

column
An integer specifying column number.

alignment
A string specifying the cell alignment. Possible values are:

left
Align left

right
Align right

center
Align center

Description
Specifies the alignment of the table cells.

setHeading
Purpose
Specify table title
Syntax
setHeading(title)

Arguments
title

A string, element object, or object array, specifying the table title.

Description
Specifies the table title, which is the first line of the table.

8-65

ModelAdvisor.Table

setHeadingAlign
Purpose
Specify table title alignment
Syntax
setHeadingAlign(alignment)

Arguments
alignment

A string specifying the cell alignment. Possible values are:

left
Align left

right
Align right

center
Align center

Description
Specifies the alignment of table titles.

setRowHeading
Purpose
Specify table row title
Syntax
setRowHeading(row, heading)

Arguments
row

An integer specifying row number.

heading
A string, element object, or object array specifying the table row
title.

Description
Specifies the table row title.

8-66

ModelAdvisor.Table

setRowHeadingAlign
Purpose
Specify row title alignment
Syntax
setRowHeadingAlign(row, alignment)

Arguments
row

An integer specifying row number.

alignment
A string specifying the cell alignment. Possible values are:

left
Align left

right
Align right

center
Align center

Description
Specifies the alignment of row titles.

Example table1 = ModelAdvisor.Table(1,1);
table2 = ModelAdvisor.Table(2,3);
table2.setHeading('Table 2');
table2.setHeadingAlign('center');
table2.setColHeading(1, 'Header 1');
table2.setColHeading(2, 'Header 2');
table2.setColHeading(3, 'Header 3');
table1.setHeading('Table 1');
table1.setEntry(1,1,table2);

See Also ModelAdvisor.Image, ModelAdvisor.LineBreak, ModelAdvisor.List,
ModelAdvisor.Paragraph, ModelAdvisor.Text

8-67

ModelAdvisor.Task

Purpose Define custom tasks

Class
Description

The ModelAdvisor.Task class is a wrapper for a check so you can access
the check with the Model Advisor.

You can use one ModelAdvisor.Check object in multiple
ModelAdvisor.Task objects, allowing you to place the same check in
multiple locations in the Model Advisor tree. For example, Check for
implicit signal resolution is in the By Product > Simulink folder
and in the By Task > Model Referencing folder in the Model Advisor
tree.

Syntax

task_obj = ModelAdvisor.Task(task_ID)

Arguments

task_obj
A variable representing the task object you create.

task_ID
A string that uniquely identifies the task. The value of task_ID
must remain constant. If you do not specify a task_ID, the Model
Advisor assigns a random task_ID to the task object.

Method
Summary

Name Description

“setCheck” on page 8-69 Specify check used in task

8-68

ModelAdvisor.Task

Methods setCheck
Purpose

Specify check used in task
Syntax
task_obj.setCheck(check_ID)

Arguments
task_obj

A variable representing the task object.

check_ID
A unique string that identifies the check to use in the task.

Description
The setCheck method specifies the check to use in the task.
See Also
ModelAdvisor.Check

Example
Note The following example is a fragment of code from the
sl_customization.m file for the demo model slvnvdemo_mdladv. The
example does not execute as shown without the additional content
found in the sl_customization.m file.

See “Demo and Code Example” on page 6-6 in the Simulink® Verification
and Validation™ User’s Guide on page 1 for more information.

function defineTaskAdvisor

mdladvRoot = ModelAdvisor.Root;

MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

MAT1.DisplayName='Example task with input parameter and auto-fix ability';

MAT1.setCheck('com.mathworks.sample.Check1');

mdladvRoot.register(MAT1);

MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');

8-69

ModelAdvisor.Task

MAT2.DisplayName='Example task 2';

MAT2.setCheck('com.mathworks.sample.Check2');

mdladvRoot.register(MAT2);

MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');

MAT3.DisplayName='Example task 3';

MAT3.setCheck('com.mathworks.sample.Check3');

mdladvRoot.register(MAT3);

See Also • ModelAdvisor.Check

• “Defining Custom Tasks” on page 6-37 in the Simulink® Verification
and Validation™ User’s Guide on page 1

8-70

ModelAdvisor.Text

Purpose Create Model Advisor text output

Syntax text = ModelAdvisor.Text(content, {attribute})

Arguments text
A variable representing the text object created.

content
A string specifying the content.

attribute
A string specifying the formatting of the content. If no attribute is
specified, the output text has default coloring with no formatting
implemented. Possible formatting options include:

bold
Text is bold.

italic
Text is italic.

underlined
Text is underlined.

normal
Text is default color.

pass
Text is green.

warn
Text is yellow.

fail
Text is red.

keyword
Text is blue.

subscript
Text is subscripted.

8-71

ModelAdvisor.Text

superscript
Text is superscripted.

retainspacereturn
Text retains spacing and returns.

Description Use instances of this constructor to create formatted text for Model
Advisor outputs. You can implement the ModelAdvisor.Text
constructor with or without an attribute value. If content is empty,
empty text is output.

Method
Summary

Name Description

“setBold” on page 8-72 Bold text
“setColor” on page 8-73 Color text
“setHyperlink” on page 8-73 Hyperlink text
“setItalic” on page 8-74 Italic text
“setRetainSpaceReturn” on page 8-74 Retain spacing and returns

in text
“setSubscript” on page 8-74 Subscripted text
“setSuperscript” on page 8-75 Superscripted text
“setUnderlined” on page 8-75 Underlined text

Methods setBold
Purpose

Bold text
Syntax
setBold(mode)

Arguments
mode

A Boolean value indicating bold formatting of text, either on
(true) or off (false).

8-72

ModelAdvisor.Text

Description
This method makes text bold.

setColor
Purpose
Color text
Syntax
setColor(color)

Arguments
color

An enumerated string specifying the color of the text. Possible
formatting options include:

normal
Text is default color.

pass
Text is green.

warn
Text is yellow.

fail
Text is red.

keyword
Text is blue.

Description
This method colors text.

setHyperlink
Purpose
Hyperlink text
Syntax
setHyperlink(url)

8-73

ModelAdvisor.Text

Arguments
url

A string that specifies the location of the link.

Description
This method hyperlinks text to the specified URL.

setItalic
Purpose
Italic text
Syntax
setItalic(mode)

Arguments
mode

A Boolean value indicating italicized formatting of text, either
on (true) or off (false).

Description
This method italicizes text.

setRetainSpaceReturn
Purpose
Retain spacing and returns
Syntax
setRetainSpaceReturn(mode)

Arguments
mode

A Boolean value indicating whether to preserve space and return
formatting of text, either on (true) or off (false).

Description
This method retains spaces and carriage returns in text.

setSubscript
Purpose
Subscript text

8-74

ModelAdvisor.Text

Syntax
setSubscript(mode)

Arguments
mode

A Boolean value indicating subscripted formatting of text, either
on (true) or off (false).

Description
This method subscripts text.

setSuperscript
Purpose
Superscript text
Syntax
setSuperscript(mode)

Arguments
mode

A Boolean value indicating superscripted formatting of text,
either on (true) or off (false).

Description
This method superscripts text.

setUnderlined
Purpose
Underline text
Syntax
setUnderlined(mode)

Arguments
mode

A Boolean value indicating underlined formatting of text, either
on (true) or off (false).

Description
This method underlines text.

8-75

ModelAdvisor.Text

Example t1 = ModelAdvisor.Text('It is ');

t2 = ModelAdvisor.Text('recommended', {'italic'});

t3 = ModelAdvisor.Text(' to use same font for ');

t4 = ModelAdvisor.Text('blocks', {'bold'});

t5 = ModelAdvisor.Text(' to ensure uniform appearance of model.');

result = [t1, t2, t3, t4, t5];

See Also ModelAdvisor.Image, ModelAdvisor.LineBreak, ModelAdvisor.List,
ModelAdvisor.Paragraph, ModelAdvisor.Table

8-76

rmi

Purpose Requirements Management Interface API

Syntax rmi setup
rmi register linktypename
rmi unregister linktypename
rmi linktypelist
reqlinks = rmi('createempty')
reqlinks = rmi('get', object)
reqlinks = rmi('get', object, group)
rmi('set', object, reqlinks)
rmi('set', object, reqlinks, group)
rmi('cat', object, reqlinks)
cnt = rmi('count', object)
rmi('clearall', object)
cmdstr = rmi('navcmd', object)
[cmdstr, titlestr] = rmi('navcmd', object)
guidstr = rmi('guidget', object)
object = rmi('guidlookup', model, guidstr)
rmi('highlightModel', object)
rmi('unhighlightModel', object)
rmi('view', object, index)
dialog = rmi('edit', object)
rmi('copyObj', object)

Description Use the rmi command to interact programmatically with the
Requirements Management Interface (RMI).

• “RMI Setup” on page 8-77

• “Requirement Link Management” on page 8-78

• “Navigation and Display Options” on page 8-79

RMI Setup

rmi setup configures the RMI for use with your computer and installs
the interface for use with the Telelogic DOORS software, if needed. See
“Configuring the Requirements Management Interface” on page 2-3 for
more information about using this command to set up the RMI.

8-77

rmi

rmi register linktypename registers the custom link type specified
by the M-file function linktypename. See “Linking to Custom Types of
Requirements Documents” on page 2-28 for more information.

rmi unregister linktypename removes the custom link type specified
by the M-file function linktypename.

rmi linktypelist displays a list of the currently registered link types.
The list indicates whether each link type is built-in or custom and
provides the path to the M-file function used for its registration.

Requirement Link Management

reqlinks = rmi('createempty') creates an empty instance of the
requirement links data structure. See “Requirement Links Data
Structure” on page 8-80 for more information.

reqlinks = rmi('get', object) returns the requirement links data
structure for object. object is the name or handle of a Simulink or
Stateflow object with which requirements can be associated.

reqlinks = rmi('get', object, group) returns the requirement
links data structure for the Signal Builder group specified by the index
group. In this case, object is the name or handle of a Signal Builder
block whose signal groups are associated with requirements.

rmi('set', object, reqlinks) sets the requirement links data
structure reqlinks to object.

rmi('set', object, reqlinks, group) sets the requirement links
data structure reqlinks to the Signal Builder group specified by
the index group. In this case, object is the name or handle of a
Signal Builder block whose signal groups you want to associate with
requirements.

rmi('cat', object, reqlinks) appends the requirement links data
structure reqlinks to the end of the existing structure associated with
object. If no structure exists, the RMI sets reqlinks to object.

cnt = rmi('count', object) returns the number of requirement
links associated with object.

8-78

rmi

rmi('clearall', object) removes the requirement links data
structure associated with object, deleting its requirements.

Navigation and Display Options

cmdstr = rmi('navcmd', object) returns the MATLAB command
string used to navigate to object. object is the name or handle of a
Simulink or Stateflow object with which requirements can be associated.
See “Navigating to Simulink Models from External Documents” on page
2-42 for more information.

[cmdstr, titlestr] = rmi('navcmd', object) returns the
MATLAB command string cmdstr and the title string titlestr that
provides descriptive text for object.

guidstr = rmi('guidget', object) returns the globally unique
identifier for object. A globally unique identifier is created for object
if it lacks one. See “Providing Unique Object Identifiers” on page 2-42
for more information.

object = rmi('guidlookup', model, guidstr) returns the object
name in model that has the globally unique identifier specified by
guidstr.

rmi('highlightModel', object) highlights all of the objects in the
parent model of object that have requirement links.

rmi('unhighlightModel', object) removes highlighting of objects
in the parent model of object that have requirement links.

rmi('view', object, index) accesses the requirement numbered
index in the requirements document associated with object. index is
an integer that represents the nth requirement linked to object.

dialog = rmi('edit', object) displays the Requirements dialog
box for object and returns the handle of the dialog box.

rmi('copyObj', object) resets the globally unique identifier for
object, preserving its requirement links.

8-79

rmi

Requirement
Links Data
Structure

Requirement links are represented using a MATLAB structure array
with the following fields:

• doc— a string identifying the requirements document, equivalent to
the Document field of the Requirements dialog box.

• id — a string defining a particular location in the requirements
document. The first character in the string specifies the type of
identifier that follows. Valid characters that can appear at the
beginning of the string are

Character Identifier Example

? Search text, the first
occurrence of which is located
in the requirements document

'?Requirement 1'

@ Named item, such as a
bookmark in a Microsoft Word
document or an anchor in an
HTML document

'@my_req'

Page or item number '#21'

> Line number '>3156'

$ Worksheet range in a
spreadsheet

'$A2:C5'

• linked— a Boolean value specifying whether the requirement link is
accessible for report generation and highlighting. The default value
is 1 (true), specifying that the RMI can highlight the model object and
include its requirement link in generated reports.

• description — a string describing the requirement, equivalent to
the Description field of the Requirements dialog box.

• keywords — an optional string supplementing description,
equivalent to the User tag field of the Requirements dialog box.

• reqsys— a string identifying the link type registration name. This
field displays 'other' for built-in link types.

8-80

rminav

Purpose Start Requirements Management Interface

Syntax rminav

Description rminav starts the Requirements Management Interface Navigator
window.

If you specified reqsys = 'OTHERS' in the MATLAB M-file
reqmgropts.m, the standard version of the Requirements Management
Interface Navigator window opens. You can associate requirements
documents written in HTML or Microsoft Word and Excel software with
Simulink models, Stateflow charts, and MATLAB M-files.

If you specified reqsys = 'DOORS' in reqmgropts.m, the DOORS
software version of the Requirements Management Interface Navigator
window opens. You can associate requirements in the Telelogic DOORS
software with Simulink models, Stateflow charts, and MATLAB M-files.

To associate requirements in the DOORS software with MATLAB
objects, you must start the MATLAB software with the /automation
option.

8-81

sigrangeinfo

Purpose Display signal range coverage information for model object

Syntax [min, max] = sigrangeinfo(cvdo, object)
[min, max] = sigrangeinfo(cvdo, object, portID)

Description [min, max] = sigrangeinfo(cvdo, object) returns the minimum
and maximum signal values output by the model component object
within the cvdata object cvdo. See “Specifying a Model Object” on
page 8-82 for more information about the object argument. If object
outputs a vector, min and max are also vectors.

[min, max] = sigrangeinfo(cvdo, object, portID) returns the
minimum and maximum signal values associated with the output port
portID of the Simulink block object.

Specifying a Model Object

The object argument specifies an object in the Simulink model or
Stateflow diagram that received decision coverage. Valid values for
object include the following:

Object Specification Description

BlockPath Full path to a Simulink model or
block

BlockHandle Handle to a Simulink model or
block

slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a

Stateflow block and the ID of an
object contained in that chart

8-82

sigrangeinfo

Object Specification Description

{BlockPath, sfObj} Cell array with the path to a
Stateflow block and a Stateflow
object API handle contained in
that chart

[BlockHandle, sfID] Array with a Stateflow block
handle and the ID of an object
contained in that chart

Example The following commands open the slvnvdemo_cv_small_controller
demo model, create the test specification object testObj, enable signal
range coverage for testObj, and execute testObj.

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
testObj.settings.sigrange = 1;
data = cvsim(testObj)

Afterward, issue the following commands to retrieve the signal range
for the Product block.

blk_handle = get_param([mdl, '/Product'], 'Handle');
[minVal, maxVal] = sigrangeinfo(data, blk_handle)

8-83

tableinfo

Purpose Display lookup table coverage information for model object

Syntax coverage = tableinfo(cvdo, object)
coverage = tableinfo(cvdo, object, ignore_descendants)
[coverage, exeCounts] = tableinfo(cvdo, object)
[coverage, exeCounts, brkEquality] = tableinfo(cvdo, object)

Description coverage = tableinfo(cvdo, object) returns lookup table coverage
results from the cvdata object cvdo for the model component specified
by object. object is the full path or handle to a Simulink lookup table
block or a model containing such a block. The value of coverage is a
two-element vector of form [covered_intervals total_intervals],
the elements of which are defined as follows:

• covered_intervals — the number of interpolation/extrapolation
intervals satisfied for object

• total_intervals— the total number of interpolation/extrapolation
intervals for object

Note coverage is empty if cvdo does not contain lookup table coverage
results for object.

coverage = tableinfo(cvdo, object, ignore_descendants)
returns lookup table coverage results for object, ignoring the coverage
of its descendent objects if ignore_descendants is true (i.e., 1).

[coverage, exeCounts] = tableinfo(cvdo, object) returns
lookup table coverage results and the execution count for each
interpolation/extrapolation interval in the lookup table block specified
by object. exeCounts is an array having the same dimensionality as
the lookup table block; however, its size has been extended to allow for
the lookup table extrapolation intervals.

[coverage, exeCounts, brkEquality] = tableinfo(cvdo,
object) returns lookup table coverage results, the execution count for

8-84

tableinfo

each interpolation/extrapolation interval, and the execution counts for
breakpoint equality. brkEquality is a cell array containing vectors
that identify the number of times in a simulation the lookup table block
input was equivalent to a breakpoint value. Each vector represents the
breakpoints along a different lookup table dimension.

Example The following commands open the slvnvdemo_cv_small_controller
demo model, create the test specification object testObj, enable lookup
table coverage for testObj, and execute testObj.

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
testObj.settings.tableExec = 1;
data = cvsim(testObj)

Afterward, issue the following commands to retrieve the lookup table
coverage results for the Gain Table block (in the Gain subsystem)
and determine its percentage of interpolation/extrapolation intervals
covered.

blk_handle = get_param([mdl, '/Gain/Gain Table'], 'Handle');
cov = tableinfo(data, blk_handle)
percent_cov = 100 * cov(1) / cov(2)

8-85

tableinfo

8-86

9

Block Reference

System Requirements

Purpose List system requirements in Simulink diagrams

Library Simulink Verification and Validation

Description The System Requirements block lists all the system requirements
associated with the model or subsystem depicted in the current
diagram. It does not list requirements associated with individual blocks
in the diagram.

You can place this block anywhere in a diagram. It is not connected to
other Simulink blocks. You can only have one System Requirements
block in a diagram.

When you drag the System Requirements block from the Library
Browser into your Simulink diagram, it is automatically populated with
the system requirements, as shown.

Each of the listed requirements is an active link to the actual
requirements document. When you double-click on a requirement name,
the associated requirements document opens in its editor window,
scrolled to the target location.

9-2

System Requirements

If the System Requirements block exists in a diagram, it automatically
updates the requirements listing as you add, modify, or delete
requirements for the model or subsystem.

For more information on using the System Requirements block, see
“Displaying the System Requirements in a Diagram” on page 2-50.

Dialog
Box and
Parameters

To access the Block Parameters dialog box for the System Requirements
block, right-click on the System Requirements block and, from
the resulting pop-up menu, select Mask Parameters. The Block
Parameters dialog box opens, as shown.

The Block Parameters dialog box for the System Requirements block
contains one parameter.

Block Title
The title of the system requirements list in the diagram. The
default title is System Requirements. You can type a customized
title, for example, Engine Requirements.

9-3

System Requirements

9-4

10

Model Advisor Checks

• “Simulink® Verification and Validation Checks” on page 10-2

• “DO-178B Checks” on page 10-3

• “IEC 61508 Checks” on page 10-57

• “MathWorks Automotive Advisory Board Checks” on page 10-73

• “Requirements Consistency Checks” on page 10-140

10 Model Advisor Checks

Simulink Verification and Validation Checks

10-2

DO-178B Checks

DO-178B Checks

In this section...

“Check safety-related optimization settings” on page 10-4
“Check safety-related diagnostic settings for solvers” on page 10-8
“Check safety-related diagnostic settings for sample time” on page 10-11
“Check safety-related diagnostic settings for signal data” on page 10-14
“Check safety-related diagnostic settings for parameters” on page 10-17
“Check safety-related diagnostic settings for data used for debugging” on
page 10-20
“Check safety-related diagnostic settings for data store memory” on page
10-22
“Check safety-related diagnostic settings for type conversions” on page 10-24
“Check safety-related diagnostic settings for signal connectivity” on page
10-26
“Check safety-related diagnostic settings for bus connectivity” on page 10-28
“Check safety-related diagnostic settings that apply to function-call
connectivity” on page 10-30
“Check safety-related diagnostic settings for compatibility” on page 10-32
“Check safety-related diagnostic settings for model referencing” on page
10-34
“Check safety-related model referencing settings” on page 10-38
“Check safety-related code generation settings” on page 10-40
“Check safety-related diagnostic settings for saving” on page 10-47
“Check for proper usage of For Iterator blocks” on page 10-49
“Check for proper usage of While Iterator blocks” on page 10-50
“Display model version information” on page 10-52
“Check for proper usage of blocks that compute absolute values” on page
10-53
“Check for proper usage of Relational Operator blocks” on page 10-55

10-3

10 Model Advisor Checks

Check safety-related optimization settings
Check model configuration for optimization settings that can impact safety.

Description
This check verifies that model optimization configuration parameters are set
optimally for generating code for a safety-related application. Although highly
optimized code is desirable for most real-time systems, some optimizations
can have undesirable side effects that impact safety.

Results and Recommended Actions

Condition Recommended Action

Block reduction optimization is on. This
optimization can remove blocks from
generated code, resulting in requirements
with no associated code and violations for
traceability requirements. (See DO-178B,
Section 6.3.4e—Source code is traceable to
low-level requirements.)

Clear the Block reduction check box on
the Optimization pane of the Configuration
Parameters dialog box or set the parameter
BlockReduction to off.

Conditional input branch execution is
on. Because the model coverage tool does
not account for this optimization, the
optimization can result in the tool reporting
100% model coverage while coverage for
the code using the same test cases can be
less than 100%. (See DO-178B, Section
6.4.4.2—Test coverage of software structure
is achieved.)

Clear the Conditional input branch execution
check box on the Optimization pane of the
Configuration Parameters dialog box or set the
parameter ConditionallyExecuteInputs to off.

Implementation of logic signals as
Boolean data is off. Strong data typing
is recommended for safety-related code.
(See DO-178B, Section 6.3.1e—High-level
requirements conform to standards,
DO-178B, Section 6.3.2e—Low-level
requirements conform to standards, and
MISRA C 2004, Rule 12.6.)

Select Implement logic signals as boolean
data (vs. double) on the Optimization pane of
the Configuration Parameters dialog box or set
the parameter BooleanDataType to on.

10-4

DO-178B Checks

Condition Recommended Action

The model includes blocks that depend on
elapsed or absolute time and is configured to
minimize the amount of memory allocated
for the timers. Such a configuration limits
the number of days the application can
execute before a timer overflow occurs.
Many aerospace products are powered on
continuously and timers should not assume
a limited lifespan. (See DO-178B, Section
6.3.1g—Algorithms are accurate, DO-178B,
Section 6.3.2g—Algorithms are accurate,
and MISRA C 2004, Rule 12.11.)

Set Application lifespan (days) on the
Optimization pane of the Configuration
Parameters dialog box or set the parameter
LifeSpan to inf.

The optimization that ignores integer
downcasts in folded expressions is on.
This optimization can remove blocks that
typecast data from generated code, resulting
in requirements with no associated
code and violations for traceability
requirements. (See DO-178B, Section
6.3.1g—Algorithms are accurate, DO-178B,
Section 6.3.2g—Algorithms are accurate,
and MISRA C 2004, Rule 10.1.)

Clear the Ignore integer downcasts in folded
expressions check box on the Optimization
pane of the Configuration Parameters dialog box
or set the parameter EnforceIntegerDowncast
to off.

The optimization that suppresses the
generation of initialization code for
root-level inports and outports that are set
to zero is on. For safety-related code, you
should explicitly initialize all variables.
(See DO-178B, Section 6.3.3b—Software
architecture is consistent and MISRA C
2004, Rule 9.1.)

Clear the Remove root level I/O
zero initialization check box on the
Optimization pane of the Configuration
Parameters dialog box or set the parameter
ZeroExternalMemoryAtStartup to on.
Alternatively, integrate external, hand-written
code that initializes all I/O variables to zero
explicitly.

10-5

10 Model Advisor Checks

Condition Recommended Action

The optimization that suppresses the
generation of initialization code for internal
work structures, such as block states and
block outputs that are set to zero, is on. For
safety-related code, you should explicitly
initialize all variables. (See DO-178B,
Section 6.3.3b—Software architecture is
consistent and MISRA C 2004, Rule 9.1.)

Clear the Remove internal data
zero initialization check box on the
Optimization pane of the Configuration
Parameters dialog box or set the parameter
ZeroInternalMemoryAtStartup to on.
Alternatively, integrate external, hand-written
code that initializes all state variables to zero
explicitly.

The optimization that suppresses generation
of code resulting from floating-point to
integer conversions that wrap out-of-range
values is off. You must avoid overflows for
safety-related code. When this optimization
is off and your model includes blocks
that disable the Saturate on overflow
parameter, the code generator wraps
out-of-range values for those blocks. This
can result in unreachable and, therefore,
untestable code. (See DO-178B, Section
6.3.1g—Algorithms are accurate, DO-178B,
Section 6.3.2g—Algorithms are accurate,
and MISRA C 2004, Rule 12.11.)

Select Remove code from floating-point to
integer conversions that wraps out-of-range
values on the Optimization pane of the
Configuration Parameters dialog box or set the
parameter EfficientFloat2IntCast to on.

The optimization that specifies whether to
generate code that guards against division
by zero for fixed-point data is on. You
must avoid division-by-zero exceptions in
safety-related code. (See DO-178B, Section
6.3.1g—Algorithms are accurate, DO-178B,
Section 6.3.2g—Algorithms are accurate,
and MISRA C 2004, Rule 21.1.)

Clear the Remove code that protects against
division arithmetic exceptions check box on
the Optimization pane of the Configuration
Parameters dialog box or set the parameter
NoFixptDivByZeroProtection to off.

Action Results
Clicking Modify Settings configures model optimization settings that can
impact safety.

10-6

DO-178B Checks

See Also

• Optimization Pane in the Simulink graphical user interface documentation

• Optimizing a Model for Code Generation in the Real-Time Workshop®
documentation

• Tips for Optimizing the Generated Code in the Real-Time Workshop
Embedded Coder documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-7

http://www.rtca.org/aboutrtca.asp

10 Model Advisor Checks

Check safety-related diagnostic settings for solvers
Check model configuration for diagnostic settings that apply to solvers and
that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to solvers are set optimally for generating code for a safety-related application.

Results and Recommended Actions

Condition Recommended Action

The diagnostic for detecting automatic
breakage of algebraic loops is set to none
or warning. The breaking of algebraic
loops can affect the predictability of the
order of block execution. For safety-related
applications, a model developer needs
to know when such breaks occur. (See
DO-178B, Section 6.3.3e – Software
architecture conforms to standards.)

Set Algebraic loop on theDiagnostics > Solver
pane of the Configuration Parameters dialog box
or set the parameter AlgebraicLoopMsg to error.
Consider breaking such loops explicitly with Unit
Delay blocks to ensure that execution order is
predictable. At a minimum, verify that the results
of loops breaking automatically are acceptable.

The diagnostic for detecting automatic
breakage of algebraic loops for Model
blocks, atomic subsystems, and enabled
subsystems is set to none or warning.
The breaking of algebraic loops can affect
the predictability of the order of block
execution. For safety-related applications,
a model developer needs to know when
such breaks occur. (See DO-178B, Section
6.3.3e – Software architecture conforms to
standards.)

Set Minimize algebraic loop on the
Diagnostics > Solver pane of the Configuration
Parameters dialog box or set the parameter
ArtificialAlgebraicLoopMsg to error.
Consider breaking such loops explicitly with Unit
Delay blocks to ensure that execution order is
predictable. At a minimum, verify that the results
of loops breaking automatically are acceptable.

10-8

DO-178B Checks

Condition Recommended Action

The diagnostic for detecting potential
conflict in block execution order is set
to none or warning. For safety-related
applications, block execution order must
be predictable. A model developer needs to
know when conflicting block priorities exist.
(See DO-178B, Section 6.3.3b – Software
architecture is consistent.)

Set Block priority violation on the
Diagnostics > Solver pane of the Configuration
Parameters dialog box or set the parameter
BlockPriorityViolationMsg to error.

The diagnostic for detecting whether a model
contains an S-function that has not been
specified explicitly to inherit sample time
is set to none or warning. These settings
can result in unpredictable behavior. A
model developer needs to know when such
an S-function exists in a model so it can be
modified to produce predictable behavior.
(See DO-178B, Section 6.3.3e – Software
architecture conforms to standards.)

Set Unspecified inheritability of sample
times on the Diagnostics > Solver pane of the
Configuration Parameters dialog box or set the
parameter UnknownTslnhSupMsg to error.

The diagnostic for detecting whether the
Simulink software automatically modifies
the solver, step size, or simulation stop time
is set to none or warning. Such changes
can affect the operation of generated
code. For safety-related applications, it is
better to detect such changes so a model
developer can explicitly set the parameters
to known values. (See DO-178B, Section
6.3.3e – Software architecture conforms to
standards.)

Set Automatic solver parameter selection
on the Diagnostics > Solver pane of the
Configuration Parameters dialog box or set the
parameter SolverPrmCheckMsg to error.

The diagnostic for detecting when a name
is used for more than one state in the
model is set to none. State names within a
model should be unique. For safety-related
applications, it is better to detect name
clashes so a model developer can correct
them. (See DO-178B, Section 6.3.3b –
Software architecture is consistent.)

Set State name clash on the
Diagnostics > Solver pane of the Configuration
Parameters dialog box or set the parameter
StateNameClashWarn to warning.

10-9

10 Model Advisor Checks

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
solvers and that can impact safety.

See Also

• Diagnostics Pane: Solver in the Simulink graphical user interface
documentation

• Diagnosing Simulation Errors in the Simulink documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-10

http://www.rtca.org/aboutrtca.asp

DO-178B Checks

Check safety-related diagnostic settings for sample
time
Check model configuration for diagnostic settings that apply to sample time
and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to sample times are set optimally for generating code for a safety-related
application.

Results and Recommended Actions

Condition Recommended Action

The diagnostic for detecting when a source
block, such as a Sine Wave block, inherits
a sample time (specified as -1) is set to
none or warning. The use of inherited
sample times for a source block can result
in unpredictable execution rates for the
source block and blocks connected to it.
For safety-related applications, source
blocks should have explicit sample times
to prevent incorrect execution sequencing.
(See DO-178B, Section 6.3.3e – Software
architecture conforms to standards.)

Set Source block specifies -1 sample time on
the Diagnostics > Sample Time pane of the
Configuration Parameters dialog box or set the
parameter InheritedTslnSrcMsg to error.

The diagnostic for detecting whether the
input for a discrete block, such as the
Unit Delay block, is a continuous signal
is set to none or warning. Signals with
continuous sample times should not be used
for embedded real-time code. (See DO-178B,
Section 6.3.3e – Software architecture
conforms to standards.)

Set Discrete used as continuous on the
Diagnostics > Sample Time pane of the
Configuration Parameters dialog box or set the
parameter DiscreteInheritContinuousMsg to
error.

10-11

10 Model Advisor Checks

Condition Recommended Action

The diagnostic for detecting invalid rate
transitions between two blocks operating in
multitasking mode is set to none or warning.
Such rate transitions should not be used for
embedded real-time code. (See DO-178B,
Section 6.3.3b – Software architecture is
consistent.)

Set Multitask rate transition on the
Diagnostics > Sample Time pane of the
Configuration Parameters dialog box or set the
parameter MultiTaskRateTransMsg to error.

The diagnostic for detecting subsystems
that can cause data corruption or
nondeterministic behavior is set to none
or warning. This diagnostic detects
whether conditionally executed multirate
subsystems (enabled, triggered, or
function-call subsystems) operate in
multitasking mode. Such subsystems can
corrupt data and behave unpredictably
in real-time environments that allow
preemption. (See DO-178B, Section 6.3.3b –
Software architecture is consistent.)

Set Multitask conditionally executed
subsystem on the Diagnostics > Sample Time
pane of the Configuration Parameters dialog box
or set the parameter MultiTaskCondExecSysMsg
to error.

The diagnostic for checking sample time
consistency between a Signal Specification
block and the connected destination block is
set to none or warning. An over-specified
sample time can result in an unpredictable
execution rate. (See DO-178B, Section
6.3.3e – Software architecture conforms to
standards.)

Set Enforce sample times specified
by Signal Specification blocks on the
Diagnostics > Sample Time pane of the
Configuration Parameters dialog box or set the
parameter SigSpecEnsureSampleTimeMsg to
error.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
sample time and that can impact safety.

10-12

DO-178B Checks

See Also

• Diagnostics Pane: Sample Time in the Simulink graphical user interface
documentation

• Diagnosing Simulation Errors in the Simulink documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-13

http://www.rtca.org/aboutrtca.asp

10 Model Advisor Checks

Check safety-related diagnostic settings for signal
data
Check model configuration for diagnostic settings that apply to signal data
and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to signal data are set optimally for generating code for a safety-related
application.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that specifies how the
Simulink software resolves signals
associated with Simulink.Signal objects in
the MATLAB workspace is set to Explicit
and implicit or Explicit and warn
implicit. For safety-related applications,
model developers should be required to
define signal resolution explicitly. (See
DO-178B, Section 6.3.3b – Software
architecture is consistent.)

Set Signal resolution on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set
the parameter SignalResolutionControl to
Explicit only. This provides predictable
operation by requiring users to define each
signal and block setting that must resolve to
Simulink.Signal objects in the workspace.

The Product block diagnostic that detects a
singular matrix while inverting one of its
inputs in matrix multiplication mode is set
to none or warning. Division by a singular
matrix can result in numeric exceptions
when executing generated code. This is
not acceptable in safety-related systems.
(See DO-178B, Section 6.3.1g – Algorithms
are accurate, DO-178B, Section 6.3.2g –
Algorithms are accurate, and MISRA C
2004, Rule 21.1.)

Set Division by singular matrix on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter CheckMatrixSingularityMsg to
error.

10-14

DO-178B Checks

Condition Recommended Action

The diagnostic that detects when the
Simulink software cannot infer the data
type of a signal during data type propagation
is set to none or warning. For safety-related
applications, model developers must ensure
that all data types are specified correctly.
(See DO-178B, Section 6.3.1e – High-level
requirements conform to standards,
DO-178B and Section 6.3.2e – Low-level
requirements conform to standards.)

Set Underspecified data types on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter UnderSpecifiedDataTypeMsg to
error.

The diagnostic that detects whether the
value of a signal or parameter is too large to
be represented by the signal or parameter’s
data type is set to none or warning.
Undetected numeric overflows can result in
incorrect and unsafe application behavior.
(See DO-178B, Section 6.3.1g – Algorithms
are accurate, DO-178B, Section 6.3.2g –
Algorithms are accurate, and MISRA C
2004, Rule 21.1.)

Set Detect overflow on the Diagnostics > Data
Validity pane of the Configuration
Parameters dialog box or set the parameter
IntegerOverflowMsg to error.

The diagnostic that detects when the value
of a block output signal is Inf or NaN at
the current time step is set to none or
warning. When this type of block output
signal condition occurs, numeric exceptions
can result, and numeric exceptions are not
acceptable in safety-related applications.
(See DO-178B, Section 6.3.1g – Algorithms
are accurate, DO-178B, Section 6.3.2g –
Algorithms are accurate, and MISRA C
2004, Rule 21.1.)

Set Inf or NaN block output on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter SignalInfNanChecking to error.

10-15

10 Model Advisor Checks

Condition Recommended Action

The diagnostic that detects Simulink object
names that begin with rt is set to none or
warning. This diagnostic prevents name
clashes with generated signal names that
have an rt prefix. (See DO-178B, Section
6.3.1e – High-level requirements conform
to standards, and DO-178B, Section 6.3.2e
– Low-level requirements conform to
standards.)

Set "rt" prefix for identifiers on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter RTPrefix to error.

The diagnostic that detects simulation
range checking is set to none or warning.
This diagnostic detects when signals exceed
their specified ranges during simulation.
Simulink compares the signal values that a
block outputs with the specified range and
the block data type. (See DO-178B, Section
6.3.1g – Algorithms are accurate, DO-178B,
Section 6.3.2g – Algorithms are accurate,
and MISRA C 2004, Rule 21.1.)

Set Simulation range checking on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter SignalRangeChecking to error.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
signal data and that can impact safety.

See Also

• Diagnostics Pane: Data Validity in the Simulink graphical user interface
documentation

• Diagnosing Simulation Errors in the Simulink documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-16

http://www.rtca.org/aboutrtca.asp

DO-178B Checks

Check safety-related diagnostic settings for
parameters
Check model configuration for diagnostic settings that apply to parameters
and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to parameters are set optimally for generating code for a safety-related
application.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects when a
parameter downcast occurs is set to none
or warning. A downcast to a lower signal
range can result in numeric overflows of
parameters, resulting in incorrect and
unsafe behavior. (See DO-178B, Section
6.3.1g – Algorithms are accurate, DO-178B,
Section 6.3.2g – Algorithms are accurate,
and MISRA C 2004, Rule 21.1.)

Set Detect downcast on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter ParameterDowncastMsg to error.

The diagnostic that detects when a
parameter underflow occurs is set to none or
warning. When the data type of a parameter
does not have sufficient resolution, the
parameter value is zero instead of the
specified value. This can lead to incorrect
operation of generated code. (See DO-178B,
Section 6.3.1g – Algorithms are accurate,
DO-178B, Section 6.3.2g – Algorithms are
accurate, and MISRA C 2004, Rule 21.1.)

Set Detect underflow on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter ParameterUnderflowMsg to error.

10-17

10 Model Advisor Checks

Condition Recommended Action

The diagnostic that detects when a
parameter overflow occurs is set to none or
warning. Numeric overflows can result in
incorrect and unsafe application behavior
and should be detected and corrected in
safety-related applications. (See DO-178B,
Section 6.3.1g – Algorithms are accurate,
DO-178B, Section 6.3.2g – Algorithms are
accurate, and MISRA C 2004, Rule 21.1.)

SetDetect overflow on theDiagnostics > Data
Validity pane of the Configuration
Parameters dialog box or set the parameter
ParameterOverflowMsg to error.

The diagnostic that detects when a
parameter loses precision is set to none
or warning. Not detecting such errors
can result in a parameter being set to
an incorrect value in the generated code.
(See DO-178B, Section 6.3.1g – Algorithms
are accurate, DO-178B, Section 6.3.2g –
Algorithms are accurate, and MISRA C
2004, Rules 10.1, 10.2, 10.3, and 10.4.)

Set Detect precision loss on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set
the parameter ParameterPrecisionLossMsg to
error.

The diagnostic that detects when an
expression with tunable variables is reduced
to its numerical equivalent is set to none
or warning. This can result in a tunable
parameter unexpectedly not being tunable
in generated code. (See DO-178B, Section
6.3.1g – Algorithms are accurate and
DO-178B, Section 6.3.2g – Algorithms are
accurate.)

Set Detect loss of tunability on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter ParameterTunabilityLossMsg to
error.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
parameters and that can impact safety.

See Also

• Diagnostics Pane: Data Validity in the Simulink graphical user interface
documentation

10-18

DO-178B Checks

• Diagnosing Simulation Errors in the Simulink documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-19

http://www.rtca.org/aboutrtca.asp

10 Model Advisor Checks

Check safety-related diagnostic settings for data
used for debugging
Check model configuration for diagnostic settings that apply to data used for
debugging and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to debugging are set optimally for generating code for a safety-related
application.

See

• DO-178B, Section 6.3.1e – High-level requirements conform to standards

• DO-178B and Section 6.3.2e – Low-level requirements conform to standards

Results and Recommended Actions

Condition Recommended Action

The diagnostic that enables model
verification blocks is set to Use local
settings or Enable all. Such blocks
should be disabled because they are
assertion blocks, which are for verification
only. Model developers should not use
assertions in embedded code.

Set Model Verification block enabling on
the Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter AssertControl to Disable All.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
data used for debugging and that can impact safety.

See Also

• Diagnostics Pane: Data Validity in the Simulink graphical user interface
documentation

• Diagnosing Simulation Errors in the Simulink documentation

10-20

DO-178B Checks

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-21

http://www.rtca.org/aboutrtca.asp

10 Model Advisor Checks

Check safety-related diagnostic settings for data
store memory
Check model configuration for diagnostic settings that apply to data store
memory and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to data store memory are set optimally for generating code for a safety-related
application.

See DO-178B, Section 6.3.3b – Software architecture is consistent.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects whether the
model attempts to read data from a data
store in which it has not stored data in the
current time step is set to a value other
than Enable all as errors. Reading data
before it is written can result in use of stale
data or data that is not initialized.

Set Detect read before write on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter ReadBeforeWriteMsg to Enable all
as errors.

The diagnostic that detects whether the
model attempts to store data in a data store
after previously reading data from it in the
current time step is set to a value other
than Enable all as errors. Writing data
after it is read can result in use of stale or
incorrect data.

Set Detect write after read on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter WriteAfterReadMsg to Enable all
as errors.

10-22

DO-178B Checks

Condition Recommended Action

The diagnostic that detects whether the
model attempts to store data in a data store
twice in succession in the current time step
is set to a value other than Enable all as
errors. Writing data twice in one time step
can result in unpredictable data.

Set Detect write after write on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter WriteAfterWriteMsg to Enable all
as errors.

The diagnostic that detects when one task
reads data from a Data Store Memory block
to which another task writes data is set to
none or warning. Reading or writing data in
different tasks in multitask mode can result
in corrupted or unpredictable data.

Set Multitask data store on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter MultiTaskDSMMsg to error.

Action Results
Clicking Modify Settings configures model diagnostic settings that apply
to data store memory and that can impact safety.

See Also

• Diagnostics Pane: Data Validity in the Simulink graphical user interface
documentation

• Diagnosing Simulation Errors in the Simulink documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-23

http://www.rtca.org/aboutrtca.asp

10 Model Advisor Checks

Check safety-related diagnostic settings for type
conversions
Check model configuration for diagnostic settings that apply to type
conversions and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to type conversions are set optimally for generating code for a safety-related
application.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects Data Type
Conversion blocks used where no type
conversion is necessary is set to none.
The Simulink software might remove
unnecessary Data Type Conversion blocks
from generated code. This warning can
result in requirements with no corresponding
code. The removal of such blocks need to be
detected so model developers can remove
the unnecessary blocks explicitly. (See
DO-178B, Section 6.3.1g – Algorithms are
accurate and DO-178B, Section 6.3.2g –
Algorithms are accurate.)

Set Unnecessary type conversions on the
Diagnostics > Type Conversion pane of the
Configuration Parameters dialog box or set the
parameter UnnecessaryDatatypeConvMsg to
warning.

10-24

DO-178B Checks

Condition Recommended Action

The diagnostic that detects vector-to-matrix
or matrix-to-vector conversions at block
inputs is set to none or warning. When the
Simulink software automatically converts
between vector and matrix dimensions,
unintended operations or unpredictable
behavior can occur. (See DO-178B, Section
6.3.1g – Algorithms are accurate and
DO-178B, Section 6.3.2g – Algorithms are
accurate.)

Set Vector/matrix block input conversion on
the Diagnostics > Type Conversion pane of
the Configuration Parameters dialog box or set
the parameter VectorMatrixConversionMsg to
error.

The diagnostic that detects when a 32-bit
integer value is converted to a floating-point
value is set to none. This type of conversion
can result in a loss of precision due to
truncation of the least significant bits
for large integer values. (See DO-178B,
Section 6.3.1g – Algorithms are accurate and
DO-178B, Section 6.3.2g – Algorithms are
accurate, and MISRA C 2004, Rules 10.1,
10.2, 10.3, and 10.4.)

Set 32-bit integer to single precision float
conversion on the Diagnostics > Type
Conversion pane of the Configuration
Parameters dialog box or set the parameter
Int32ToFloatConvMsg to warning.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
type conversions and that can impact safety.

See Also

• Diagnostics Pane: Type Conversion in the Simulink graphical user
interface documentation

• Data Type Conversion block in the Simulink reference documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-25

http://www.rtca.org/aboutrtca.asp

10 Model Advisor Checks

Check safety-related diagnostic settings for signal
connectivity
Check model configuration for diagnostic settings that apply to signal
connectivity and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to signal connectivity are set optimally for generating code for a safety-related
application.

See

• DO-178B, Section 6.3.1e – High-level requirements conform to standards

• DO-178B,Section 6.3.2e – Low-level requirements conform to standards

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects virtual signals
that have a common source signal but
different labels is set to none or warning.
This diagnostic pertains to virtual signals
only and has no effect on generated code.
However, signal label mismatches can lead
to confusion during model reviews.

Set Signal label mismatch on the
Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter SignalLabelMismatchMsg to error.

The diagnostic that detects when the model
contains a block with an unconnected input
signal is set to none or warning. This must
be detected because code is not generated for
unconnected block inputs.

Set Unconnected block input ports on
the Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter UnconnectedInputMsg to error.

10-26

DO-178B Checks

Condition Recommended Action

The diagnostic that detects when the model
contains a block with an unconnected output
signal is set to none or warning. This must
be detected because dead code can result
from unconnected block output signals.

Set Unconnected block output ports on
the Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter UnconnectedOutputMsg to error.

The diagnostic that detects unconnected
signal lines and unmatched Goto or From
blocks is set to none or warning. This
error must be detected because code is not
generated for unconnected lines.

Set Unconnected line on the
Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter UnconnectedLineMsg to error.

Action Results
Clicking Modify Settings configures model diagnostic settings that apply
to signal connectivity and that can impact safety.

See Also

• Diagnostics Pane: Connectivity in the Simulink graphical user interface
documentation

• Signal Basics in the Simulink documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-27

http://www.rtca.org/aboutrtca.asp

10 Model Advisor Checks

Check safety-related diagnostic settings for bus
connectivity
Check model configuration for diagnostic settings that apply to bus
connectivity and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to bus connectivity are set optimally for generating code for a safety-related
application.

See DO-178B, Section 6.3.3b – Software architecture is consistent.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects whether a Model
block’s root Outport block is connected to a
bus but does not specify a bus object is set to
none or warning. For a bus signal to cross a
model boundary, the signal must be defined
as a bus object to ensure compatibility with
higher level models that use a model as a
reference model.

Set Unspecified bus object at root Outport
block on the Diagnostics > Connectivity pane
of the Configuration Parameters dialog box or set
the parameter RootOutportRequireBusObject
to error.

10-28

DO-178B Checks

Condition Recommended Action

The diagnostic that detects whether the
name of a bus element matches the name
specified by the corresponding bus object
is set to none or warning. This diagnostic
prevents the use of incompatible buses in
a bus-capable block such that the output
names are inconsistent.

Set Element name mismatch on the
Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter BusObjectLabelMismatch to error.

The diagnostic that detects when some
blocks treat a signal as a mux/vector,
while other blocks treat the signal as a
bus, is set to none or warning. When the
Simulink software automatically converts
a muxed signal to a bus, it is possible for
an unintended operation or unpredictable
behavior to occur.

Set Mux blocks used to create bus signals
on the Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter StrictBusMsg to error. You can use
the Model Advisor or the sl_replace_mux utility
function to replace all Mux blocks used as bus
creators with a Bus Creator block.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
bus connectivity and that can impact safety.

See Also

• Diagnostics Pane: Connectivity in the Simulink graphical user interface
documentation

• Simulink.Bus in the Simulink reference documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-29

http://www.rtca.org/aboutrtca.asp

10 Model Advisor Checks

Check safety-related diagnostic settings that apply
to function-call connectivity
Check model configuration for diagnostic settings that apply to function-call
connectivity and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to function-call connectivity are set optimally for generating code for a
safety-related application.

DO-178B, Section 6.3.3b – Software architecture is consistent

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects incorrect use
of a function-call subsystem is set to none
or warning. If this condition is undetected,
incorrect code might be generated.

Set Invalid function-call connection on
the Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter InvalidFcnCallConMsg to error.

The diagnostic that specifies whether
the Simulink software has to compute a
function-call subsystem’s inputs directly or
indirectly while executing the subsystem is
set to Use local settings or Disable all.
This diagnostic detects unpredictable data
coupling between a function-call subsystem
and the subsystem’s inputs.

Set Context-dependent inputs on the
Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter FcnCallInpInsideContextMsg to
Enable all.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
function-call connectivity and that can impact safety.

10-30

DO-178B Checks

See Also

• Diagnostics Pane: Connectivity in the Simulink graphical user interface
documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-31

http://www.rtca.org/aboutrtca.asp

10 Model Advisor Checks

Check safety-related diagnostic settings for
compatibility
Check model configuration for diagnostic settings that affect compatibility
and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to compatibility are set optimally for generating code for a safety-related
application.

See DO-178B, Section 6.3.3b – Software architecture is consistent and MISRA
C 2004, Rule 9.1.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects when a block
has not been upgraded to use features of the
current release is set to none or warning.
An S-function written for an earlier version
might not be compatible with the current
version and generated code could operate
incorrectly.

Set S-function upgrades needed on the
Diagnostics > Compatibility pane of the
Configuration Parameters dialog box or set the
parameter SFcnCompatibilityMsg to error.

The Check undefined subsystem initial
output diagnostic is off. This diagnostic
specifies whether the Simulink software
displays a warning if the model contains a
conditionally executed subsystem in which
a block with a specified initial condition
drives an Outport block with an undefined
initial condition. A conditionally executed
subsystem could have an output that is not
initialized. If undetected, this condition can
produce behavior that is nondeterministic.

Set Check undefined subsystem initial
output on the Diagnostics > Compatibility
pane of the Configuration Parameters dialog box
or set the parameter CheckSSInitialOutputMsg
to on.

10-32

DO-178B Checks

Condition Recommended Action

The diagnostic that detects potential initial
output differences from earlier releases is set
to off. An output of a conditionally executed
subsystem could have an output that is not
initialized. If undetected, this condition can
produce behavior that is nondeterministic.

Set Check preactivation output of execution
context on the Diagnostics > Compatibility
pane of the Configuration Parameters
dialog box or set the parameter
CheckExecutionContextPreStartOutputMsg to
on.

The diagnostic that detects potential output
differences from earlier releases is set to
off. An output of a conditionally executed
subsystem could have an output that is
not initialized and feeds into a block with
a tunable parameter. If undetected, this
condition can cause the behavior of the
downstream block to be nondeterministic.

Set Check runtime output of execution
context on the Diagnostics > Compatibility
pane of the Configuration Parameters
dialog box or set the parameter
CheckExecutionContextRuntimeOutputMsg to
on.

Action Results
Clicking Modify Settings configures model diagnostic settings that affect
compatibility and that can impact safety.

See Also

• Diagnosing Simulation Errors in the Simulink documentation

• Diagnostics Pane: Compatibility in the Simulink graphical user interface
documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-33

http://www.rtca.org/aboutrtca.asp

10 Model Advisor Checks

Check safety-related diagnostic settings for model
referencing
Check model configuration for diagnostic settings that apply to model
referencing and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to model referencing are set optimally for generating code for a safety-related
application.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects a mismatch
between the version of the model that
creates or refreshes a Model block and the
referenced model’s current version is set
to none or warning. The detection occurs
during load and update operations. Get the
latest version of the referenced model from
the software configuration management
system, rather than using an older version.
Using an older version can produce incorrect
simulation results and mismatches between
simulation and target code operation.
(See DO-178B, Section 6.3.3b – Software
architecture is consistent.)

Set Model block version mismatch on
the Diagnostics > Model Referencing
pane of the Configuration Parameters
dialog box or set the parameter
ModelReferenceVersionMismatchMessage
to error.

The diagnostic that detects port and
parameter mismatches during model loading
and updating is set to none or warning. If
undetected, such mismatches can lead to
incorrect simulation results because the
parent and referenced models have different
interfaces. (See DO-178B, Section 6.3.3b –
Software architecture is consistent.)

Set Port and parameter mismatch on the
Diagnostics > Model Referencing pane of the
Configuration Parameters dialog box or set the
parameter ModelReferenceIOMismatchMessage
to error.

10-34

DO-178B Checks

Condition Recommended Action

The Model configuration mismatch
diagnostic is set to none or error. This
diagnostic checks whether the configuration
parameters of a model referenced by
the current model match the current
model’s configuration parameters or are
inappropriate for a referenced model.
Some diagnostics for referenced models
are not supported in simulation mode.
Setting this diagnostic to error can prevent
simulations from running. Some differences
in configurations can lead to incorrect
simulation results and mismatches between
simulation and target code generation.
(See DO-178B, Section 6.3.3b – Software
architecture is consistent.)

Set Model configuration mismatch on the
Diagnostics > Model Referencing pane of the
Configuration Parameters dialog box or set the
parameter ModelReferenceCSMismatchMessage
to warning.

10-35

10 Model Advisor Checks

Condition Recommended Action

The diagnostic that detects invalid internal
connections to the current model’s root-level
Inport and Outport blocks is set to none or
warning. When this condition is detected,
the Simulink software might automatically
insert hidden blocks into the model to correct
the condition. The hidden blocks can result
in generated code that has no traceable
requirements. Setting the diagnostic to
error forces model developers to correct the
referenced models manually. (See DO-178B,
Section 6.3.3b – Software architecture is
consistent.)

Set Invalid root Inport/Outport block
connection on the Diagnostics > Model
Referencing pane of the Configuration
Parameters dialog box or set the parameter
ModelReferenceIOMessage to error.

The diagnostic that detects whether To
Workspace or Scope blocks are logging
data in a referenced model is set to none
or warning. Because To Workspace and
Scope blocks are for debugging and not
for embedded code, it is best to detect the
condition so model developers can correct it.
(See DO-178B, Section 6.3.1d – High-level
requirements are verifiable and DO-178B,
Section 6.3.2d – Low-level requirements are
verifiable.)

Set Unsupported data logging on the
Diagnostics > Model Referencing pane of the
Configuration Parameters dialog box or set the
parameter ModelReferenceDataLoggingMessage
to error.

Action Results
Clicking Modify Settings configures model diagnostic settings that apply
to model referencing and taht can impact safety.

See Also

• Diagnosing Simulation Errors in the Simulink documentation

• Diagnostics Pane: Model Referencing in the Simulink graphical user
interface documentation

10-36

DO-178B Checks

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-37

http://www.rtca.org/aboutrtca.asp

10 Model Advisor Checks

Check safety-related model referencing settings
Check model configuration for model referencing settings that can impact
safety.

Description
This check verifies that model configuration parameters for model referencing
are set optimally for generating code for a safety-related application.

Results and Recommended Actions

Condition Recommended Action

The referenced model is configured such
that its target is rebuilt whenever you
update, simulate, or generate code for
the model, or if the Simulink software
detects any changes in known dependencies.
These configuration settings can result
in unnecessary regeneration of the code,
resulting in changing only the date of the file
and slowing down the build process when
using model references. (See DO-178B,
Section 6.3.1b – High-level requirements
are accurate and consistent and DO-178B,
Section 6.3.2b – Low-level requirements are
accurate and consistent.)

Set Rebuild options on the Model
Referencing pane of the Configuration
Parameters dialog box or set the parameter
UpdateModelReferenceTargets to Never or If
any changes detected.

The diagnostic that detects whether a
target needs to be rebuilt is set to None or
Warn if targets require rebuild. For
safety-related applications, an error should
alert model developers that the parent
and referenced models are inconsistent.
This diagnostic parameter is available
only if Rebuild options is set to Never.
(See DO-178B, Section 6.3.1b – High-level
requirements are accurate and consistent
and DO-178B, Section 6.3.2b – Low-level
requirements are accurate and consistent.)

Set Never rebuild targets diagnostic on the
Model Referencing pane of the Configuration
Parameters dialog box or set the parameter
CheckModelReferenceTargetMessage to Error
if targets require rebuild.

10-38

DO-178B Checks

Condition Recommended Action

The ability to pass scalar root input by
value is on. This capability should be off
because scalar values can change during a
time step and result in unpredictable data.
(See DO-178B, Section 6.3.3b – Software
architecture is consistent.)

Set Pass scalar root inputs by value on the
Model Referencing pane of the Configuration
Parameters dialog box or set the parameter
ModelReferencePassRootInputsByReference to
off.

The model is configured to minimize
algebraic loop occurrences. This
configuration is incompatible with
the recommended setting of Single
output/update function for embedded
systems code. (See DO-178B, Section 6.3.3b
– Software architecture is consistent.)

Set Minimize algebraic loop occurrences on
theModel Referencing pane of the Configuration
Parameters dialog box or set the parameter
ModelReferenceMinAlgLoopOccurrences to off.

Action Results
Clicking Modify Settings configures model referencing settings that can
impact safety.

See Also

• Model Dependencies in the Simulink documentation

• Model Referencing Pane in the Simulink graphical user interface
documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-39

http://www.rtca.org/aboutrtca.asp

10 Model Advisor Checks

Check safety-related code generation settings
Check model configuration for code generation settings that can impact safety.

Description
This check verifies that model configuration parameters for code generation
are set optimally for a safety-related application.

Results and Recommended Actions

Condition Recommended Action

The option to include comments in the
generated code is off. Comments are
necessary for good traceability between the
code and the model. (See DO-178B, Section
6.3.4e – Source code is traceable to low-level
requirements.)

Set Include comments on the Real-Time
Workshop > Comments > pane of the
Configuration Parameters dialog box or set the
parameter GenerateComments to on.

The option to include comments that
describe the code for blocks is off. Comments
are necessary for good traceability between
the code and the model. (See DO-178B,
Section 6.3.4e – Source code is traceable to
low-level requirements.)

Set Simulink block / Stateflow
object comments on the Real-Time
Workshop > Comments pane of the
Configuration Parameters dialog box or set the
parameter SimulinkBlockComments to on.

The option to include comments that
describe the code for blocks eliminated from
a model is off. Comments are necessary
for good traceability between the code and
the model. (See DO-178B, Section 6.3.4e
– Source code is traceable to low-level
requirements.)

Set Show eliminated blocks on the
Real-Time Workshop > Comments pane of the
Configuration Parameters dialog box or set the
parameter ShowEliminatedStatement to on.

10-40

DO-178B Checks

Condition Recommended Action

The option to include the names of
parameter variables and source blocks
as comments in the model parameter
structure declaration in model_prm.h is
off. Comments are necessary for good
traceability between the code and the model.
(See DO-178B, Section 6.3.4e – Source code
is traceable to low-level requirements.)

Set Verbose comments for SimulinkGlobal
storage class on the Real-Time
Workshop > Comments pane of the
Configuration Parameters dialog box or set the
parameter ForceParamTrailComments to on.

The option to include requirement
descriptions assigned to Simulink blocks as
comments is off. Comments are necessary
for good traceability between the code and
the model. (See DO-178B, Section 6.3.4e
– Source code is traceable to low-level
requirements.)

Set Requirements in block comments on the
Real-Time Workshop > Comments pane of the
Configuration Parameters dialog box or set the
parameter ReqsInCode to on.

The option to generate nonfinite data and
operations is on. Support for nonfinite
numbers is inappropriate for real-time
safety-related systems. (See DO-178B,
Section 6.3.1c – High-level requirements
are compatible with target computer
and DO-178B, Section 6.3.2c – Low-level
requirements are compatible with target
computer.)

Set Support: non-finite numbers on the
Real-Time Workshop > Interface pane of the
Configuration Parameters dialog box or set the
parameter SupportNonFinite to off.

The option to generate and maintain integer
counters for absolute and elapsed time is on.
Support for absolute time is inappropriate
for real-time safety-related systems. (See
DO-178B, Section 6.3.1c – High-level
requirements are compatible with target
computer and DO-178B, Section 6.3.2c –
Low-level requirements are compatible with
target computer.)

Set Support: absolute time on the Real-Time
Workshop > Interface pane of the Configuration
Parameters dialog box or set the parameter
SupportAbsoluteTime to off.

10-41

10 Model Advisor Checks

Condition Recommended Action

The option to generate code for blocks
that use continuous time is on. Support
for continuous time is inappropriate for
real-time safety-related systems. (See
DO-178B, Section 6.3.1c – High-level
requirements are compatible with target
computer and DO-178B, Section 6.3.2c –
Low-level requirements are compatible with
target computer.)

Set Support: continuous time on the
Real-Time Workshop > Interface pane of the
Configuration Parameters dialog box or set the
parameter SupportContinuousTime to off.

The option to generate code for noninlined
S-functions is on. This option requires
support of nonfinite numbers, which is
inappropriate for real-time safety-related
systems. (See DO-178B, Section 6.3.1c –
High-level requirements are compatible
with target computer and DO-178B,
Section 6.3.2c – Low-level requirements are
compatible with target computer.)

Set Support: non-inlined S-functions on the
Real-Time Workshop > Interface pane of the
Configuration Parameters dialog box or set the
parameter SupportNonInlinedSFcns to off.

The option to generate model function calls
compatible with the main program module
of the GRT target is on. This option is
inappropriate for real-time safety-related
systems. (See DO-178B, Section 6.3.1c –
High-level requirements are compatible
with target computer and DO-178B,
Section 6.3.2c – Low-level requirements are
compatible with target computer.)

Set GRT compatible call interface on the
Real-Time Workshop > Interface pane of the
Configuration Parameters dialog box or set the
parameter GRTInterface to off.

10-42

DO-178B Checks

Condition Recommended Action

The option to generate the model_update
function is off. Having a single call to the
output and update functions simplifies
the interface to the real-time operating
system (RTOS) and simplifies verification
of the generated code. (See DO-178B,
Section 6.3.1c – High-level requirements
are compatible with target computer
and DO-178B, Section 6.3.2c – Low-level
requirements are compatible with target
computer.)

Set Single output/update function on the
Real-Time Workshop > Interface pane of the
Configuration Parameters dialog box or set the
parameter CombineOutputUpdateFcns to on.

The option to generate the model_terminate
function is on. This function deallocates
dynamic memory, which is not appropriate
for real-time safety-related systems. (See
DO-178B, Section 6.3.1c – High-level
requirements are compatible with target
computer and DO-178B, Section 6.3.2c –
Low-level requirements are compatible with
target computer.)

Set Terminate function required on the
Real-Time Workshop > Interface pane of the
Configuration Parameters dialog box or set the
parameter IncludeMdlTerminateFcn to off.

The option to log or monitor error status
is off. If you do not select this option, the
Real-Time Workshop product generates
extra code that might not be reachable for
testing. (See DO-178B, Section 6.3.1c –
High-level requirements are compatible
with target computer and DO-178B,
Section 6.3.2c – Low-level requirements are
compatible with target computer.)

Set Suppress error status in real-time
model data structure on the Real-Time
Workshop > Interface pane of the Configuration
Parameters dialog box or set the parameter
SuppressErrorStatus to on.

10-43

10 Model Advisor Checks

Condition Recommended Action

MAT-file logging is enabled. This option
adds extra code for logging test points
to a MAT-file, which is not supported by
embedded targets. Use this option only in
test harnesses. (See DO-178B, Section 6.3.1c
– High-level requirements are compatible
with target computer and DO-178B,
Section 6.3.2c – Low-level requirements are
compatible with target computer.)

Set MAT-file logging on the Real-Time
Workshop > Interface pane of the Configuration
Parameters dialog box or set the parameter
MatFileLogging to on.

The option that specifies the style for
parenthesis usage is set to Minimum (Rely
on C/C++ operators precedence) or to
Nominal (Optimize for readability).
For safety-related applications, explicitly
specify precedence with parentheses. (See
DO-178B, Section 6.3.1c – High-level
requirements are compatible with target
computer, DO-178B, Section 6.3.2c –
Low-level requirements are compatible with
target computer, and MISRA C 2004, Rule
12.1.)

Set Parenthesis level on the Real-Time
Workshop > Code pane of the Configuration
Parameters dialog box or set the parameter
ParenthesisStyle to Maximum (Specify
precedence with parentheses).

The option that specifies whether to
preserve operand order is off. This option
increases the traceability of the generated
code. (See DO-178B, Section 6.3.4e – Source
code is traceable to low-level requirements.)

Set Preserve operand order in expression on
the Real-Time Workshop > Code pane of the
Configuration Parameters dialog box or set the
parameter PreserveExpressionOrder to on.

10-44

DO-178B Checks

Condition Recommended Action

The option that specifies whether to preserve
empty primary condition expressions in if
statements is off. This option increases the
traceability of the generated code. (See
DO-178B, Section 6.3.4e – Source code is
traceable to low-level requirements.)

Set Preserve condition expression in if
statement on the Real-Time Workshop > Code
pane of the Configuration Parameters dialog box
or set the parameter PreserveIfCondition to on.

The minimum number of characters
specified for generating name mangling
strings is less than four. You can use this
option to minimize the likelihood that
parameter and signal names will change
during code generation when the model
changes. Use of this option assists with
minimizing code differences between file
versions, decreasing the effort to perform
code reviews. (See DO-178B, Section 6.3.4e
– Source code is traceable to low-level
requirements.)

SetMinimum mangle length on the Real-Time
Workshop > Symbols pane of the Configuration
Parameters dialog box or set the parameter
MangleLength to a value of 4 or greater.

Action Results
Clicking Modify Settings configures model code generation settings that
can impact safety.

See Also

• Real-Time Workshop Pane: Comments in the Real-Time Workshop
reference documentation

• Real-Time Workshop Pane: Symbols in the Real-Time Workshop reference
documentation

• Real-Time Workshop Pane: Interface in the Real-Time Workshop reference
documentation

• Real-Time Workshop Pane: Code Style in the Real-Time Workshop
Embedded Coder reference documentation

10-45

10 Model Advisor Checks

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-46

http://www.rtca.org/aboutrtca.asp

DO-178B Checks

Check safety-related diagnostic settings for saving
Check model configuration for diagnostic settings that apply to saving model
files

Description
This check verifies that model configuration parameters are set optimally for
saving a model for a safety-related application.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects whether a model
contains disabled library links before the
model is saved is set to none or warning. If
this condition is undetected, incorrect code
might be generated.

Set Block diagram contains disabled library
links on the Diagnostics > Saving> pane of the
Configuration Parameters dialog box or set the
parameter SaveWithDisabledLinkMsg to error.

The diagnostic that detects whether a
model contains library links that are using
parameters not in a mask before the model
is saved is set to none or warning. If this
condition is undetected, incorrect code
might be generated.

Set Block diagram contains parameterized
library links on the Diagnostics
> Saving> pane of the Configuration
Parameters dialog box or set the parameter
SaveWithParameterizedLinkMsg to error.

Action Results
Clicking Modify Settings configures model diagnostic settings that apply
to saving a model file.

See Also

• Disabling Links to Library Blocks in the Simulink documentation

• Identifying Disabled Library Links in the Simulink documentation

• Saving a Model in the Simulink documentation

• Model Parameters in the Simulink documentation

10-47

10 Model Advisor Checks

• Diagnostics Pane: Saving in the Simulink documentation

10-48

DO-178B Checks

Check for proper usage of For Iterator blocks
Check for For Iterator blocks that have variable loops.

Description
This check verifies that a model does not use variable loops with For Iterator
blocks.

See

• DO-178B Section 6.3.1e – High-level requirements conform to standards

• DO-178B Section 6.3.2e – Low-level requirements conform to standards

• MISRA C 2004, Rule 13.6

Results and Recommended Actions

Condition Recommended Action

The model combines the use of variable
iteration values with a For Iterator block.
The use of variable for loops can lead to
unpredictable execution time and, in the
case of external iteration variables, infinite
loops.

To avoid the use of variable for loops, do one of
the following:

• Set the Iteration limit source parameter of
the For Iterator block to internal.

• If the Iteration limit source parameter of
the For Iterator block must be external, use a
Constant, Probe, or Width block as the source.

• Avoid selecting the Set next i (iteration
variable) externally parameter of the For
Iterator block.

See Also

• For Iterator Subsystem block in the Simulink reference documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-49

http://www.rtca.org/aboutrtca.asp

10 Model Advisor Checks

Check for proper usage of While Iterator blocks
Check for While Iterator blocks that cause infinite loops.

Description
This check verifies that a model does not include infinite loops with While
Iterator blocks.

See

• DO-178B Section 6.3.1e – High-level requirements conform to standards

• DO-178B Section 6.3.2e – Low-level requirements conform to standards

• MISRA C 2004, Rule 21.1

Results and Recommended Actions

Condition Recommended Action

The model combines the use of a While
Iterator block with an unlimited number
of iterations. An unlimited number of
iterations can lead to infinite loops in
real-time code, which can lead to execution
time overruns.

To avoid infinite loops:

• Set the Maximum number of iterations
parameter of the While Iterator block to a
positive integer value.

• Consider selecting the Show iteration
number port parameter of the While Iterator
block and observe the iteration value during
simulation to determine whether the maximum
number of iterations is being reached. If
the loop reaches the maximum number of
iterations, verify whether the output values of
the While Iterator block are correct.

See Also

• While Iterator Subsystem block in the Simulink reference documentation

10-50

DO-178B Checks

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-51

http://www.rtca.org/aboutrtca.asp

10 Model Advisor Checks

Display model version information
Display model version information in your report.

Description
This check displays the following information for the current model:

• Version number

• Author

• Date

• Model checksum

Results and Recommended Actions

Condition Recommended Action

Could not retrieve model version and
checksum information.

This summary is provided for your
information. No action is required.

See Also

• Validating Generated Code in the Real-Time Workshop documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-52

http://www.rtca.org/aboutrtca.asp

DO-178B Checks

Check for proper usage of blocks that compute
absolute values
Check for absolute value blocks that have unreachable code or produce
overflows.

Description
This check verifies whether the model includes a block that attempts to
compute the absolute value of a Boolean or unsigned integer value.

See

• DO-178B Section 6.3.1d – High-level requirements are verifiable

• DO-178B Section 6.3.2d – Low-level requirements are verifiable

• DO-178B Section 6.3.1g – Algorithms are accurate

• DO-178B Section 6.3.2g – Algorithms are accurate

• MISRA C 2004, Rule 14.1

• MISRA C 2004, Rule 21.1

Results and Recommended Actions

Condition Recommended Action

The model includes a block that:

• Computes an absolute value and the input
signal of the block is a Boolean value or
an unsigned integer. Use of Boolean and
unsigned data types might result in code that
is unreachable and cannot be tested.

• Computes an absolute value of a signed
integer and Saturate on integer overflow
is not selected for that block. Taking the
absolute value of full scale negative integer
value results in an overflow.

• To avoid unreachable code, change the
input to the Absolute Value block to a
signed input type.

• To avoid overflows, select the Saturate
on integer overflow check box of the
Absolute Value block.

10-53

10 Model Advisor Checks

See Also

• Abs block in the Simulink reference documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-54

http://www.rtca.org/aboutrtca.asp

DO-178B Checks

Check for proper usage of Relational Operator blocks
Check for relational operator blocks that compare data types or equate
floating-point types.

Description
This check verifies that a model does not use the == or ~= operator with a
relational operator block to compare floating-point signals.

See

• DO-178B Section 6.3.1g – Algorithms are accurate

• DO-178B Section 6.3.2g – Algorithms are accurate

• MISRA C 2004, Rule 12.6

• MISRA C 2004, Rule 13.3

Results and Recommended Actions

Condition Recommended Action

The model includes a relational operator block
that uses the == or ~= operator to compare
floating-point signals. Because of floating-point
precision issues, the use of these operators on
floating-point signals is unreliable.

Change the data type of the signal or rework
the model to eliminate the need to use the
relational operator block with the == or ~=
operator.

See Also
Descriptions of the following blocks in the Simulink reference documentation

• Relational Operator block in the Simulink reference documentation

• Compare To Constant block in the Simulink documentation

• Compare To Zero block in the Simulink documentation

• Detect Change block in the Simulink documentation

10-55

10 Model Advisor Checks

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

10-56

http://www.rtca.org/aboutrtca.asp

IEC 61508 Checks

IEC 61508 Checks

In this section...

“Display model metrics and complexity” on page 10-58
“Check for unconnected objects” on page 10-59
“Check for fully defined interface” on page 10-60
“Check for questionable blocks” on page 10-62
“Check usage of Stateflow” on page 10-64
“Display configuration management data” on page 10-67
“Check usage of Simulink” on page 10-68

10-57

10 Model Advisor Checks

Display model metrics and complexity
Display model metrics and complexity information.

Description
The IEC 61508 standard recommends the usage of size and complexity
metrics to assess the software under development. This check provides model
metrics information for the model. The provided information can be used to
inspect whether the size or complexity of the model or subsystem exceeds
given limits. The check displays:

• A block count for each Simulink block type contained in the given model.

• The maximum subsystem depth of the given model.

• A count of Stateflow constructs in the given model (if applicable).

• Name, level, and depth of the subsystems contained in the given model (if
applicable).

See IEC 61508-3, Table A.9 (5) – Software complexity metrics.

Results and Recommended Actions

Condition Recommended Action

N/A This summary is provided for your
information. No action is required.

See Also

• sldiagnostics in the Simulink documentation

• Cyclomatic Complexity in the Stateflow documentation

10-58

IEC 61508 Checks

Check for unconnected objects
Identify unconnected lines, input ports, and output ports in the model.

Description
Unconnected objects are likely to cause problems propagating signal
attributes such as data, type, sample time, and dimensions.

Ports connected to Ground or Terminator blocks pass this check.

See IEC 61508-3, Table A.3 (3) — Language subset.

Results and Recommended Actions

Condition Recommended Action

There are unconnected lines, input
ports, or output ports in the model
or subsystem.

• Double-click an element in the list
of unconnected items to locate the
item in the model diagram.

• Properly connect the objects
identified in the results.

See Also
“Working with Signals” in the Simulink documentation

10-59

10 Model Advisor Checks

Check for fully defined interface
Identify root model Inport blocks that do not have fully defined attributes.

Description
Using root model Inport blocks that do not have fully define dimensions,
sample time, or data type can lead to undesired simulation results. Simulink
back-propagates dimensions, sample times, and data types from downstream
blocks unless you explicitly assign these values.

See IEC 61508-3, Table B.9 (5) – Fully defined interface.

Results and Recommended Actions

Condition Recommended Action

The model has root-level Inport
blocks that have undefined
attributes, such as an inherited
sample time, data type, or port
dimension.

Explicitly define all root-level Inport
block attributes identified in the
results. Double-click an element
from the list of underspecified items
to locate the condition.

Tip
The following configurations pass this check:

• Inport blocks with inherited port dimensions in conjunction with the usage
of bus objects

• Inport blocks with automatically inherited data types in conjunction with
bus objects

• Inport blocks with inherited sample times in conjunction with the Periodic
sample time constraint menu set to Ensure sample time independent

See Also

• Working with Data Types in the Simulink documentation

• Determining Output Signal Dimensions in the Simulink documentation

10-60

IEC 61508 Checks

• Specifying Sample Time in the Simulink documentation

10-61

10 Model Advisor Checks

Check for questionable blocks
Identify blocks not supported by code generation or not recommended for
deployment.

Description
This check partially identifies model constructs that are not suited for code
generation or not recommended for production code generation as identified
in the Simulink Block Support tables for Real-Time Workshop and Real-Time
Workshop Embedded Coder. If you are using blocks with support notes for
code generation, review the information and follow the given advice.

See IEC 61508-3, Table A.3 (3) – Language subset.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains
blocks that should not be used for
code generation.

Consider replacing the blocks listed
in the results. Double-click an
element from the list of questionable
items to locate condition.

The model or subsystem contains
blocks that should not be used for
production code deployment.

Consider replacing the blocks listed
in the results. Double-click an
element from the list of questionable
items to locate condition.

The model or subsystem contains
Gain blocks whose value equals 1.

If you are using Gain blocks as
buffers, consider replacing them
with Signal Conversion blocks.
Double-click an element from the
list of questionable items to locate
condition.

Limitation
This check might not identify all instances of noncompliance with the
Real-Time Workshop and Real-Time Workshop Embedded Coder Simulink
Block Support tables.

10-62

IEC 61508 Checks

See Also

• “Simulink Block Support” tables in the Real-Time Workshop documentation
for Real-Time Workshop and Real-Time Workshop Embedded Coder

• “Requirements and Restrictions for ERT-Based Simulink Models” in the
Real-Time Workshop Embedded Coder documentation

10-63

10 Model Advisor Checks

Check usage of Stateflow
Identify usage of Stateflow that can impact safety.

Description
This check identifies instances of Stateflow software being used in a way that
can impact an application’s safety, including

• Use of strong data typing

• Port name mismatches

• Scope of data objects and events

• Formatting of state action statements

See

• IEC 61508-3, Table A.3 (2) – Strongly typed programming language

• IEC 61508-3, Table A.3 (3) – Language subset

• IEC 61508-3, Table B.9 (2) – Information hiding/encapsulation

• MISRA C:2004, Rule 10.1

• MISRA C:2004, Rule 10.2

• MISRA C:2004, Rule 10.3

• MISRA C:2004, Rule 10.4

• MAAB Control Algorithm Modeling Guidelines, db_0122: Stateflow and
Simulink interface signals and parameters

• MAAB Control Algorithm Modeling Guidelines, db_0123: Stateflow port
names

• MAAB Control Algorithm Modeling Guidelines, db_0125: Scope of internal
signals and local auxiliary variables

• MAAB Control Algorithm Modeling Guidelines, db_0126: Scope of Events

• MAAB Control Algorithm Modeling Guidelines, jc_0501: Format of entries
in a state block

10-64

IEC 61508 Checks

Results and Recommended Actions

Condition Recommended Action

A Stateflow chart is not configured
for strong data typing on boundaries
between a Simulink model and
theStateflow chart.

Enable the option Use Strong
Data Typing with Simulink I/O
for the Stateflow chart. When you
enable this option, the Stateflow
chart accepts input signals of any
data type that Simulink models
support, provided that the type of
the input signal matches the type of
the corresponding Stateflow input
data object.

Signals have names that differ
from those of their corresponding
Stateflow ports.

• Check whether the ports are
connected properly and, if not,
correct the connections.

• Change the names of the signals
or the Stateflow ports so that the
names match.

Events are not defined in the
Stateflow hierarchy at the chart
level or below.

Define events at the chart level or
below.

Local data is not defined in the
Stateflow hierarchy at the chart
level or below.

Define local data at the chart level
or below.

A new line is missing from a state
action after

• An entry (en), during (du), or
exit (ex) statement

• The semicolon (;) at the end of an
assignment statement

Add missing new lines.

See Also
See the following topics in the Stateflow documentation

10-65

10 Model Advisor Checks

• “Strong Data Typing with Simulink I/O”

• “Property Fields”

• “Defining Events”

• “Defining Data”

• “Labeling States”

10-66

IEC 61508 Checks

Display configuration management data
Display model configuration and checksum information.

Description
This informer check displays the following information for the current model:

• Model version number

• Model author

• Date

• Model checksum

See IEC 61508-3, Table A.8 (5) – Software configuration management.

Results and Recommended Actions

Condition Recommended Action

Could not retrieve model version and
checksum information.

This summary is provided for your
information. No action is required.

See Also

• “How Simulink Helps You Manage Model Versions” in the Simulink
documentation

• Model Change Log in the Simulink® Report Generator™ documentation

• Simulink.BlockDiagram.getChecksum in the Simulink documentation

• Simulink.SubSystem.getChecksum in the Simulink documentation

10-67

10 Model Advisor Checks

Check usage of Simulink
Identify usage of Simulink blocks that can impact safety.

Description
Blocks that you use incorrectly can result in unreachable code, incorrect or
unpredictable results, infinite loops, and unpredictable execution times in
generated code.

This check inspects your model for proper usage of:

• Abs blocks

• Blocks that compute relational operators including Relational Operator,
Compare To Constant, Compare To Zero, and Detect Change blocks

• While Iterator blocks

• For Iterator blocks

See

• IEC 61508-3, Table A.3 (2) – Strongly typed programming language

• IEC 61508-3, Table A.3 (3) – Language subset

• IEC 61508-3, Table A.4 (3) – Defensive programming

• IEC 61508-3, Table B.8 (3) – Control Flow Analysis

• MISRA C:2004, Rule 13.3

• MISRA C:2004, Rule 13.6

• MISRA C:2004, Rule 14.1

• MISRA C:2004, Rule 21.1

10-68

IEC 61508 Checks

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains
an Abs block that is operating on
a Boolean or an unsigned input
data type. This condition results in
unreachable simulation pathways
through the model and might result
in unreachable code.

• Change the input of the Abs block
to a signed input type.

• Remove the Absfrom the model.

The model or subsystem contains
an Abs block that is operating on
a signed integer value, and the
Saturate on integer overflow
check box is cleared. For signed data
types, the absolute value of the most
negative value is problematic since
it is not representable by the data
type. This condition results in an
overflow in the generated code.

Select the Saturate on integer
overflow check box of the specified
Abs blocks.

The model or subsystem contains
a block computing a relational
operator that is operating on
different data types. The condition
can lead to unpredictable results in
the generated code.

For the specified blocks, use common
data types as inputs.

The model or subsystem contains
a block computing a relational
operator that is not generating
Boolean data as its output. This
condition violates strong data typing
rules and can lead to unpredictable
results in the generated code.

Set the Output data type
to boolean in the Block
Parameters > Signal Attributes
pane for the specified blocks.

10-69

10 Model Advisor Checks

Condition Recommended Action

The model or subsystem contains
a block computing a relational
operator that uses the == or ~=
operator to compare floating-point
signals. The use of these operators on
floating-point signals is unreliable
and unpredictable because of
floating-point precision issues, and
can lead to unpredictable results in
the generated code.

For the specified blocks, do one of
the following:

• Change the signal data type.

• Rework the model to eliminate
the need to use == or ~= operators
on floating-point signals.

10-70

IEC 61508 Checks

Condition Recommended Action

The model or subsystem contains
a While Iterator block that has
unlimited iterations. This condition
can lead to infinite loops in the
generated code.

For the specified While Iterator
blocks:

• Set the Maximum number of
iterations (-1 for unlimited)
parameter to a positive integer
value.

• Consider selecting the Show
iteration number port check
box and observe the iteration
value during simulation.

The model or subsystem contains a
For Iterator block that has variable
iterations. This condition can lead
to unpredictable execution times or
infinite loops in the generated code.

For the specified For Iterator blocks,
do one of the following:

• Set the Iteration limit source
parameter to internal.

• If the Iteration limit source
parameter must be external, use
a Constant, Probe, or Width block
as the source.

• Clear the Set next i (iteration
variable) externally check box.

• Consider selecting the Show
iteration variable check box and
observe the iteration value during
simulation.

See Also
Descriptions of the following blocks in the Simulink reference documentation:

• Abs block

• Relational Operator block

• Compare To Constant block

10-71

10 Model Advisor Checks

• Compare To Zero block

• Detect Change block

• While Iterator block

• For Iterator block

10-72

MathWorks Automotive Advisory Board Checks

MathWorks Automotive Advisory Board Checks

In this section...

“Check for difference in font and font sizes” on page 10-76
“Check transition orientations in flow charts” on page 10-78
“Check for display of nondefault block attributes” on page 10-79
“Check for proper labeling on signal lines” on page 10-80
“Check for propagated labels on signal lines” on page 10-82
“Check default transition placement in Stateflow charts” on page 10-84
“Check setting Stateflow graphical function return value” on page 10-85
“Check for blocks not using one-based indexing” on page 10-86
“Check for invalid file names” on page 10-88
“Check for invalid model directory names” on page 10-90
“Check for blocks that are not discrete ” on page 10-91
“Check for prohibited sink blocks” on page 10-92
“Check for invalid port positioning and configuration” on page 10-93
“Check for mismatches between names of ports and corresponding signals”
on page 10-95
“Check whether block names do not appear below blocks” on page 10-96
“Check for systems that mix primitive blocks and subsystems” on page 10-97
“Check whether model has unconnected block input ports, output ports, or
signal lines” on page 10-99
“Check for improperly positioned Trigger and Enable blocks” on page 10-100
“Check whether annotations have drop shadows” on page 10-101
“Check whether tunable parameters specify expressions, data type
conversions, or indexing operations” on page 10-102
“Check whether Stateflow events are defined at the chart level or below”
on page 10-104

10-73

10 Model Advisor Checks

In this section...

“Check whether Stateflow data objects with local scope are defined at the
chart level or below” on page 10-105
“Check interface signals and parameters” on page 10-106
“Check for exclusive states, default states, and substate validity” on page
10-107
“Check optimization parameters for Boolean data types” on page 10-109
“Check model diagnostic settings” on page 10-110
“Check the display attributes of block names” on page 10-114
“Check icon display attributes for port blocks” on page 10-115
“Check whether subsystem block names include invalid characters” on
page 10-116
“Check whether Inport and Outport block names include invalid characters”
on page 10-118
“Check whether signal line names include invalid characters” on page
10-120
“Check whether block names include invalid characters” on page 10-122
“Check Trigger and Enable block port names” on page 10-124
“Check for Simulink diagrams that have nonstandard appearance
attributes” on page 10-125
“Check visibility of port block names” on page 10-128
“Check for direction of subsystem blocks” on page 10-130
“Check for proper position of constants used in Relational Operator blocks”
on page 10-131
“Check for entry format in state blocks” on page 10-132
“Check for use of tunable parameters in Stateflow” on page 10-134
“Check for proper use of Switch blocks” on page 10-135
“Check for proper use of signal buses and Mux block usage” on page 10-136

10-74

MathWorks Automotive Advisory Board Checks

In this section...

“Check for mismatches between Stateflow ports and associated signal
names” on page 10-138
“Check for proper scope of From and Goto blocks” on page 10-139

10-75

10 Model Advisor Checks

Check for difference in font and font sizes
Check for difference in font and font sizes.

Description
With the exception of free text annotations within a model, text elements,
such as block names, block annotations, and signal labels, must have the same
font style and font size. Select a font style and font size that is legible and
portable (convertible between platforms), such as Arial or Helvetica 12 point.

This guideline facilitates

• Readability

• Workflow

See MAAB guideline db_0043: Simulink font and font size.

Input Parameters

Font Name
Apply the specified font to all text elements. Available fonts include
Helvetica (default), Arial, Arial Black, Mangal, or Modern.

Font Size
Apply the specified font size to all text elements. Available sizes include
-1, 6, 8, 9, 10 (default), 12, 14, 16, 18, 20, 22, and 24.

Font Angle
Apply the specified font angle to all text elements. Available angles
include auto (default), normal, italic, and oblique.

Font Weight
Apply the specified font weight to all text elements. Available weights
include auto (default), normal, light, demi , and bold.

10-76

MathWorks Automotive Advisory Board Checks

Results and Recommended Actions

Condition Recommended Action

The fonts or font sizes for text
elements in the model are not
consistent or portable.

Specify values for the font
parameters and click Modify
all Fonts, or manually change the
fonts and font sizes of text elements
in the model such that they are
consistent and portable.

Action Results
ClickingModify all Fonts changes the font and font size of all text elements
in the model according to the values you specify for the font parameters.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-77

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check transition orientations in flow charts
Check transition orientations in flow charts.

Description
The following rules apply to transitions in flow charts:

• Draw transition conditions horizontally.

• Draw transitions with a condition action vertically.

Loop constructs are exceptions to these rules.

This guideline facilitates

• Readability

• Workflow

• Verification and validation

See MAAB guideline db_0132: Transitions in flowcharts.

Results and Recommended Actions

Condition Recommended Action

The model includes a transition
with a condition that is not drawn
horizontally or a transition action
that is not drawn vertically.

Modify the model.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-78

http://www.mathworks.com/industries/auto/maab.html

MathWorks Automotive Advisory Board Checks

Check for display of nondefault block attributes
Check for display of nondefault block attributes.

Description
Model diagrams should display block parameters that have values other than
default values. One way of displaying this information is by using the Block
Annotation tab in the Block Properties dialog box.

This guideline facilitates

• Readability

• Verification and validation

See MAAB guideline db_0140: Display of basic block attributes.

Results and Recommended Actions

Condition Recommended Action

Block parameters that have values
other than default values do not
appear in the model display.

Use the Block Annotation tab in
the Block Properties dialog to add
block parameter annotations.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-79

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check for proper labeling on signal lines
Check for proper labeling on signal lines.

Description
You should use a label to identify:

• Signals originating from the following blocks (the block icon exception
noted below applies to all blocks listed except Inport, Bus Selector, Demux,
and Selector):

Bus Selector block (tool forces labeling)
Chart block (Stateflow)
Constant block
Data Store Read block
Demux block
From block
Inport block
Selector block
Subsystem block

Block Icon Exception If a signal label is visible in the display of the
icon for the originating block, you do not have to display a label for the
connected signal unless the signal label is needed elsewhere due to a rule
for signal destinations.

• Signals connected to one of the following destination blocks (directly
or indirectly with a basic block that performs an operation that is not
transformative):

Bus Creator block
Chart block (Stateflow)
Data Store Write block
Goto block
Mux block
Outport block
Subsystem block

10-80

MathWorks Automotive Advisory Board Checks

• Any signal of interest.

This guideline facilitates

• Readability

• Workflow

• Verification and validation

• Code generation

See MAAB guideline na_0008: Proper labeling of signal lines.

Results and Recommended Actions

Condition Recommended Action

Signals coming from Bus Selector,
Chart, Constant, Data Store Read,
Demux, From, Inport, or Selector
blocks are not labeled.

Double-click the line that represents
the signal. After the text cursor
appears, enter a name and click
anywhere outside the label to exit
label editing mode.

See Also

• Signal Labels in the Simulink documentation

• The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-81

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check for propagated labels on signal lines
Check for propagated labels on signal lines.

Description
You should propagate a signal label from its source rather than enter the
signal label explicitly (manually) if the signal originates from:

• An Inport block in a nested subsystem. However, if the nested subsystem
is a library subsystem, you can explicitly label the signal coming from the
Inport block to accommodate reuse of the library block.

• A basic block that performs a nontransformative operation.

• A Subsystem or Stateflow Chart block. However, if the connection
originates from the output of an instance of the library block, you can
explicitly label the signal to accommodate reuse of the library block.

This guideline facilitates

• Readability

• Workflow

• Verification and validation

• Code generation

See MAAB guideline na_0009: Entry versus propagation of signal labels.

Results and Recommended Actions

Condition Recommended Action

The model includes signal labels that
were entered explicitly, but should
be propagated.

Use the open angle bracket (<)
character to mark signal labels
that should be propagated and
remove the labels that were entered
explicitly.

10-82

MathWorks Automotive Advisory Board Checks

See Also

• Signal Labels in the Simulink documentation

• The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-83

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check default transition placement in Stateflow
charts
Check default transition placement in Stateflow charts.

Description
In a Stateflow chart, you should connect the default transition at the top of
the state and place the destination state of the default transition above other
states in the hierarchy.

Properly position the default transition and its destination state for:

• Readability

See MAAB guideline jc_0531: Placement of default transition.

Results and Recommended Actions

Condition Recommended Action

The default transition for a Stateflow
chart is not connected at the top of
the state.

Move the default transition to the
top of the state chart.

The destination state of a Stateflow
chart’s default transition is lower
than other states in the same
hierarchy.

Adjust the position of the default
transition’s destination state such
that the state is above other states
in the same hierarchy.

See Also

• “Defining Transitions Between States” in the Stateflow documentation

• The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-84

http://www.mathworks.com/industries/auto/maab.html

MathWorks Automotive Advisory Board Checks

Check setting Stateflow graphical function return
value
Check setting Stateflow graphic function return value.

Description
The return value from a Stateflow graphical function must be set in only
one place.

This guideline facilitates

• Workflow

• Code generation

See MAAB guideline jc_0511: Setting the return value from a graphical
function.

Results and Recommended Actions

Condition Recommended Action

The return value from a Stateflow
graphical function is set in multiple
places.

Modify the function such that its
return value is set in one place.

See Also

• “Graphical Functions” in the Stateflow documentation

• The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-85

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check for blocks not using one-based indexing
Check for blocks that do not use one-based indexing.

Description
One-based indexing ([1, 2, 3,...]) is used for the following:

Product Items

MATLAB • Workspace variables and structures

• Local variables of MATLAB functions

• Global variables
Simulink • Signal vectors and matrices

• Parameter vectors and matrices

• S-function input and output signal vectors
and matrices in M-code

• S-function parameter vectors and matrices
in M-code

• S-function local variables in M-code
Stateflow • Input and output signal vectors and

matrices

• Parameter vectors and matrices

• Local variables

Zero-based indexing ([0, 1, 2, ...]) is used for the following:

10-86

MathWorks Automotive Advisory Board Checks

Product Items

Simulink • Signal vectors and matrices

• S-function input and output signal vectors
and matrices in C code

• S-function input parameters in C code

• S-function parameter vectors and matrices
in C code

• S-function local variables in C code
Stateflow • Variables and structures in custom C code
C code • Local variables and structures

• Global variables

This guideline facilitates

• Readability

• Workflow

• Code generation

See MAAB guideline db_0112: Indexing.

Results and Recommended Actions

Condition Recommended Action

Blocks in your model are not
configured for one-based indexing.

Using block parameters, configure
all blocks for one-based indexing.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-87

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check for invalid file names
Check for files residing in the same directory as the model that have illegal
file names.

Description
This guideline facilitates

• Readability

• Workflow

See MAAB guideline ar_0001: Filenames.

Results and Recommended Actions

Condition Recommended Action

The file name contains illegal
characters.

Rename the file. Allowed characters
are a–z, A–Z, 0–9. and underscore
(_).

The file name starts with a number. Rename the file.
The file name starts with an
underscore ("_").

Rename the file.

The file name ends with an
underscore ("_").

Rename the file.

The file extension contains one (or
more) underscores.

Change the file extension.

The file name has consecutive
underscores.

Rename the file.

The file name contains more than
one dot (".").

Rename the file.

10-88

MathWorks Automotive Advisory Board Checks

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-89

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check for invalid model directory names
Checks model directory and subdirectory names for invalid characters.

Description
This guideline facilitates

• Readability

• Workflow

See MAAB guideline ar_0002: Directory names.

Results and Recommended Actions

Condition Recommended Action

The directory name contains illegal
characters.

Rename the directory. Allowed
characters are a–z, A–Z, 0–9. and
underscore (_).

The directory name starts with a
number.

Rename the directory.

The directory name starts with an
underscore ("_").

Rename the directory.

The directory name ends with an
underscore ("_").

Rename the directory.

The directory name has consecutive
underscores.

Rename the directory.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-90

http://www.mathworks.com/industries/auto/maab.html

MathWorks Automotive Advisory Board Checks

Check for blocks that are not discrete
Check for blocks that are not discrete.

Description
You cannot include continuous blocks in controller models.

This guideline facilitates

• Readability

• Workflow

• Code generation

See MAAB guideline jm_0001: Prohibited Simulink standard blocks inside
controllers.

Results and Recommended Actions

Condition Recommended Action

Continuous blocks — Derivative,
Integrator, State-Space, Transfer
Fcn, Transfer Delay, Variable Time
Delay, Variable Transport Delay,
and Zero-Pole — are not permitted
in models representing discrete
controllers.

Replace continuous blocks with
the equivalent blocks discretized
in the s-domain by using the
Discretizing library, as explain in
“How to Discretize Blocks from the
Simulink Model” in the Simulink
documentation.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-91

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check for prohibited sink blocks
Check for prohibited Simulink sink blocks.

Description
You must design controller models from discrete blocks. Sink blocks, such
as the Scope block, are not allowed.

This guideline facilitates

• Readability

• Workflow

See MAAB guideline hd_0001: Prohibited Simulink Sink blocks.

Results and Recommended Actions

Condition Recommended Action

Sink blocks are not permitted in
discrete controllers.

Remove sink blocks from the model.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-92

http://www.mathworks.com/industries/auto/maab.html

MathWorks Automotive Advisory Board Checks

Check for invalid port positioning and configuration
Check whether the model contains ports with invalid position and
configuration.

Description
In models, ports must comply with the following rules:

• Place Inport blocks on the left side of the diagram. Move the Inport block
right only to prevent signal crossings.

• Place Outport blocks on the right side of the diagram. Move the Outport
block left only to prevent signal crossings.

• Avoid using duplicate Inport blocks at the subsystem level if possible.

• Do not use duplicate Inport blocks at the root level.

This guideline facilitates

• Readability

See MAAB guideline db_0042: Port block in Simulink models.

Results and Recommended Actions

Condition Recommended Action

Inport blocks are too far to the right
and result in left-flowing signals.

Move the specified Inport blocks to
the left.

Outport blocks are too far to the left
and result in right-flowing signals.

Move the specified Output blocks to
the right.

10-93

10 Model Advisor Checks

Condition Recommended Action

Ports do not have the default
orientation.

Modify the model diagram such that
signal lines for output ports enter
the side of the block and signal lines
for input ports exit the right side of
the block.

Ports are duplicate Inport blocks. • If the duplicate Inport blocks are
in a subsystem, remove them
where possible.

• If the duplicate Inport blocks are
at the root level, remove them.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-94

http://www.mathworks.com/industries/auto/maab.html

MathWorks Automotive Advisory Board Checks

Check for mismatches between names of ports and
corresponding signals
Check for mismatches between names of ports and corresponding signals.

Description
Use matching names for ports and their corresponding signals.

This guideline facilitates

• Readability

• Workflow

• Simulation

See MAAB guideline jm_0010: Port block names in Simulink models.

Results and Recommended Actions

Condition Recommended Action

Ports have names that differ from
their corresponding signals.

Change the port name or the signal
name to match the correct name for
the signal.

Limitations
Prerequisite MAAB guidelines for this check are:

• db_0042: Ports in Simulink models

• na_0005: Port block name visibility in Simulink models

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-95

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check whether block names do not appear below
blocks
Check whether block names do not appear below blocks.

Description
If shown, the name of all blocks should appear below the blocks.

This guideline facilitates

• Readability

• Workflow

See MAAB guideline db_0142: Position of block names.

Results and Recommended Actions

Condition Recommended Action

Blocks have names that do not
appear below the blocks.

Set the name of the block to appear
below the blocks.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-96

http://www.mathworks.com/industries/auto/maab.html

MathWorks Automotive Advisory Board Checks

Check for systems that mix primitive blocks and
subsystems
Check for systems that mix primitive blocks and subsystems.

Description
You must design every level of a model with building blocks of the same type,
for example, only subsystems or only primitive (basic) blocks.

This guideline facilitates

• Readability

• Workflow

• Verification and validation

See MAAB guideline db_0143: Similar block types on the model levels.

Results and Recommended Actions

Condition Recommended Action

A level in the model includes both
subsystem blocks and primitive
blocks.

• Move nonvirtual blocks into the
subsystem.

• If possible, replace blocks at
the identified level of the model
hierarchy with blocks that you can
place at any module level. Such
blocks include Inport, Outport,
Enable (not at highest model
level), Trigger (not at highest
model level), Mux, Demux, Bus
Selector, Bus Creator, Selector,
Ground, Terminator, From, Goto,
Switch, Multiport Switch, Merge,
Unit Delay, Rate Transition, Type
Conversion, Data Store Memory,
If, and Switch Case.

10-97

10 Model Advisor Checks

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-98

http://www.mathworks.com/industries/auto/maab.html

MathWorks Automotive Advisory Board Checks

Check whether model has unconnected block input
ports, output ports, or signal lines
Check whether model has unconnected input ports, output ports, or signal
lines.

Description
All unconnected inputs should be connected to ground blocks. All unconnected
outputs should be connected to terminator blocks. Respecting the guideline
eliminates error messages.

See MAAB guideline db_0081: Unconnected signals, block inputs, and block
outputs.

Results and Recommended Actions

Condition Recommended Action

Blocks have unconnected inputs or
outputs.

Connect unconnected lines to blocks
specified by the design or to Ground
or Terminator blocks.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-99

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check for improperly positioned Trigger and Enable
blocks
Check for improperly positioned Trigger and Enable blocks.

Description
Locate blocks that define subsystems as conditional or iterative at the top
of the subsystem diagram.

This guideline facilitates

• Readability

• Workflow

• Verification and validation

See MAAB guideline db_0146: Triggered, enabled, conditional Subsystems.

Results and Recommended Actions

Condition Recommended Action

Trigger , Enable, and Action Port
blocks are not centered in the upper
third of the model diagram.

Move the Trigger, Enable, and
Action Port blocks to the correct area
of the model diagram.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-100

http://www.mathworks.com/industries/auto/maab.html

MathWorks Automotive Advisory Board Checks

Check whether annotations have drop shadows
Check whether annotations have drop shadows.

Description
Annotations should not have a drop shadow for readability.

This guideline facilitates

• Readability

See MAAB guideline jm_0013: Annotations.

Results and Recommended Actions

Condition Recommended Action

Annotations display drop shadows. Clear the Format > Show Drop
Shadow menu option.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-101

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check whether tunable parameters specify
expressions, data type conversions, or indexing
operations
Check whether tunable parameters specify expressions, data type conversions,
or indexing operations.

Description
To ensure that a parameter is tunable, you must enter the basic block without
the use of MATLAB calculations or scripting. For example, omit

• Expressions

• Data type conversions

• Selections of rows or columns

This guideline facilitates

• Readability

• Workflow

• Code generation

See MAAB guideline db_0110: Tunable parameters in basic blocks.

Results and Recommended Actions

Condition Recommended Action

Blocks have a tunable parameter
that specifies an expression, data
type conversion, or indexing
operation.

In each case, move the calculation
outside of the block, for example,
by performing the calculation with
a series of Simulink blocks, or
precompute the value in the base
workspace as a new variable.

10-102

MathWorks Automotive Advisory Board Checks

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-103

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check whether Stateflow events are defined at the
chart level or below
Check whether Stateflow events are defined at the chart level or below.

Description
All events of a Stateflow chart must be defined at the chart level or lower.
Events cannot be at the machine level; that is, charts cannot interact with
local events.

This guideline facilitates

• Readability

• Workflow

• Verification and validation

See MAAB guideline db_0126: Scope of events.

Results and Recommended Actions

Condition Recommended Action

An event in a chart is not defined at
the chart level or below.

Define the event at the chart level
or below.

See Also

• “Defining Events” in the Stateflow documentation.

• The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-104

http://www.mathworks.com/industries/auto/maab.html

MathWorks Automotive Advisory Board Checks

Check whether Stateflow data objects with local
scope are defined at the chart level or below
Check whether Stateflow data objects with local scope are defined at the
chart level or below.

Description
You must define all local data of a Stateflow block on the chart level or below
in the object hierarchy. You cannot define local variables on the machine
level; however, parameters and constants are allowed at the machine level.

This guideline facilitates

• Readability

• Workflow

• Verification and validation

See MAAB guideline db_0125: Scope of internal signals and local auxiliary
variables.

Results and Recommended Actions

Condition Recommended Action

Local data is not defined in the
Stateflow hierarchy at the chart
level or below.

Define local data at the chart level
or below.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-105

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check interface signals and parameters
Check whether labeled Stateflow and Simulink input and output signals
are strongly typed.

Description
Strong data typing between Stateflow and Simulink input and output signals
is required.

This guideline facilitates

• Readability

• Workflow

• Verification and validation

See MAAB guideline db_0122: Stateflow and Simulink interface signals and
parameters.

Results and Recommended Actions

Condition Recommended Action

A Stateflow chart does not use strong
data typing with Simulink.

Select theUse Strong Data Typing
with Simulink I/O check box for
the specified block.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-106

http://www.mathworks.com/industries/auto/maab.html

MathWorks Automotive Advisory Board Checks

Check for exclusive states, default states, and
substate validity
Check states in state machines.

Description
In state machines:

• There must be at least two exclusive states.

• A state cannot have only one substate.

• The initial state of a hierarchical level with exclusive states is clearly
defined by a default transition.

This guideline facilitates

• Readability

• Workflow

• Verification and validation

See MAAB guideline db_0137: States in state machines.

Prerequisite
A prerequisite MAAB guideline for this check is db_0149: Flowchart patterns
for conditional actions.

Results and Recommended Actions

Condition Recommended Action

A system is underspecified. Validate that the intended design
is properly represented in the
Stateflow diagram.

Chart has only one exclusive (OR)
state.

Make the state a parallel state, or
add another exclusive (OR) state.

10-107

10 Model Advisor Checks

Condition Recommended Action

Chart does not have a default state
defined.

Define a default state.

Chart has multiple default states
defined.

Define only one default state. Make
the others nondefault.

State has only one exclusive (OR)
substate.

Make the state a parallel state, or
add another exclusive (OR) state.

State does not have a default
substate defined.

Define a default substate.

State has multiple default substates
defined.

Define only one default substate,
make the others nondefault.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-108

http://www.mathworks.com/industries/auto/maab.html

MathWorks Automotive Advisory Board Checks

Check optimization parameters for Boolean data
types
Check the optimization parameter for Boolean data types.

Description
Optimization for Boolean data types is required

This guideline facilitates

• Workflow

• Code generation

See MAAB guideline jc_0011: Optimization parameters for Boolean data
types.

Results and Recommended Actions

Condition Recommended Action

Configuration setting for
Implement logic signals as
boolean data (vs. double) is
incorrect.

Select the Implement logic signals
as boolean data (vs. double) check
box in the Configuration Parameters
dialog box Optimization pane.

Prerequisite
A prerequisite MAAB guideline for this check is na_0002: Appropriate
implementation of fundamental logic and numerical operations.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-109

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check model diagnostic settings
Check the model diagnostics configuration parameter settings.

Description
You should enable the following diagnostics:

Algebraic loop
Minimize algebraic loop
Inf or NaN block output
Duplicate data store names
Unconnected block input ports
Unconnected block output ports
Unconnected line
Unspecified bus object at root Outport block
Mux blocks used to create bus signals
Element name mismatch
Invalid function-call connection

This guideline facilitates

• Workflow

• Code generation

Diagnostics not listed in the Results and Recommended Actions section below
can be set to any value.

See MAAB guideline jc_0021: Model diagnostic settings.

10-110

MathWorks Automotive Advisory Board Checks

Results and Recommended Actions

Condition Recommended Action

Algebraic loop is set to none. Set Algebraic loop on the
Diagnostics > Solver pane of
the Configuration Parameters
dialog box to error or warning.
Otherwise, Simulink might attempt
to automatically break the algebraic
loops, which can affect execution
order of the blocks.

Minimize algebraic loop is set to
none.

Set Minimize algebraic loop on
the Diagnostics > Solver pane
of the Configuration Parameters
dialog box to error or warning.
Otherwise, Simulink might attempt
to automatically break the algebraic
loops for reference models and
atomic subsystems, which can affect
the execution order for those models
or subsystems.

Inf or NaN block output is set to
none, which can result in numerical
exceptions in the generated code.

Set Inf or NaN block output
on the Diagnostics > Data
Validity > Signals pane of the
Configuration Parameters dialog box
to error or warning.

Duplicate data store names is
set to none, which can result in
nonunique variable naming in the
generated code.

SetDuplicate data store names on
the Diagnostics > Data Validity
> Signals pane of the Configuration
Parameters dialog box to error or
warning.

Unconnected block input ports
is set to none, which prevents code
generation.

Set Unconnected block input
ports on the Diagnostics > Data
Validity > Signals pane of the
Configuration Parameters dialog box
to error or warning.

10-111

10 Model Advisor Checks

Condition Recommended Action

Unconnected block output ports
is set to none, which can lead to dead
code.

Set Unconnected block output
ports on the Diagnostics > Data
Validity > Signals pane of the
Configuration Parameters dialog box
to error or warning.

Unconnected line is set to none,
which prevents code generation.

Set Unconnected line on the
Diagnostics > Connectivity > Signals
pane of the Configuration
Parameters dialog box to error
or warning.

Unspecified bus object at root
Outport block is set to none, which
can lead to an unspecified interface if
the model is referenced from another
model.

Set Unspecified bus object at
root Outport block on the
Diagnostics > Connectivity > Buses
pane of the Configuration
Parameters dialog box to error
or warning.

Mux blocks used to create bus
signals is set to none, which can
lead to an unintended bus being
created in the model.

Set Mux blocks used to
create bus signals on the
Diagnostics > Connectivity > Buses
pane of the Configuration
Parameters dialog box to error
or warning.

Element name mismatch is set to
none, which can lead to an incorrect
interface in the generated code.

Set Element name
mismatch on the
Diagnostics > Connectivity > Buses
pane of the Configuration
Parameters dialog box to error
or warning.

Invalid function-call connection
is set to none, which can lead to
an error in the operation of the
generated code.

Set Invalid function-call
connection on the
Diagnostics > Connectivity > Function
Calls pane of the Configuration
Parameters dialog box to error or
warning, since this condition can
lead to an error in the operation of
the generated code.

10-112

MathWorks Automotive Advisory Board Checks

Tip

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-113

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check the display attributes of block names
Check the display attributes of block names.

Description
Block names should be displayed when providing descriptive information.
Block names should not be displayed if the block function is known from its
appearance.

This guideline facilitates

• Readability

See MAAB guideline jc_0061: Display of block names.

Results and Recommended Actions

Condition Recommended Action

Block name is not descriptive. These block names should be
modified to be more descriptive or
not be shown.

Block name is not displayed. These block names should be
shown since they appear to have a
descriptive name.

Block name is obvious. These block names should not be
displayed.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-114

http://www.mathworks.com/industries/auto/maab.html

MathWorks Automotive Advisory Board Checks

Check icon display attributes for port blocks
Check the Icon display setting for Inport and Outport blocks.

Description
The Icon display setting is required.

This guideline facilitates

• Readability

See MAAB guideline jc_0081: Icon display for port block.

Results and Recommended Actions

Condition Recommended Action

The Icon display setting is
incorrect.

Set the Icon display to Port
number for the specified Inport and
Outport blocks.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-115

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check whether subsystem block names include
invalid characters
Check whether subsystem block names include invalid characters.

Description
The names of all subsystem blocks are required.

This guideline facilitates

• Readability

• Workflow

• Code generation

See MAAB guideline jc_0201: Usable characters for Subsystem name.

Results and Recommended Actions

Condition Recommended Action

The subsystem name contains illegal
characters.

Rename the subsystem. Allowed
characters include a–z, A–Z, 0–9,
underscore (_), and period (.).

The subsystem name starts with a
number.

Rename the subsystem.

The subsystem name starts with an
underscore ("_").

Rename the subsystem.

The subsystem name ends with an
underscore ("_").

Rename the subsystem.

The subsystem name contains
consecutive underscores.

Rename the subsystem.

The subsystem name has consecutive
underscores.

Rename the subsystem.

The subsystem name has blank
spaces.

Rename the subsystem.

10-116

MathWorks Automotive Advisory Board Checks

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

Tip
Use underscores to separate parts of a subsystem name instead of spaces.

10-117

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check whether Inport and Outport block names
include invalid characters
Check whether Inport and Outport block names include invalid characters.

Description
The names of all Inport and Outport blocks are required.

This guideline facilitates

• Readability

• Workflow

• Code generation

See MAAB guideline jc_0211: Usable character for Inport block and Outport
block.

Results and Recommended Actions

Condition Recommended Action

The block name contains illegal
characters.

Rename the block. Allowed
characters include a–z, A–Z, 0–9,
underscore (_), and period (.).

The block name starts with a
number.

Rename the block.

The block name starts with an
underscore ("_").

Rename the block.

The block name ends with an
underscore ("_").

Rename the block.

The block name contains consecutive
underscores.

Rename the block.

The block name has consecutive
underscores.

Rename the block.

The block name has blank spaces. Rename the block.

10-118

MathWorks Automotive Advisory Board Checks

Tips
Use underscores to separate parts of a block name instead of spaces.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-119

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check whether signal line names include invalid
characters
Check whether signal line names include invalid characters.

Description
The names of all signal lines are required.

This guideline facilitates

• Readability

• Workflow

• Code generation

See MAAB guideline jc_0221: Usable characters for signal line name.

Results and Recommended Actions

Condition Recommended Action

The signal line name contains illegal
characters.

Rename the signal line. Allowed
characters include a–z, A–Z, 0–9,
underscore (_), and period (.).

The signal line name starts with a
number.

Rename the signal line.

The signal line name starts with an
underscore ("_").

Rename the signal line.

The signal line name ends with an
underscore ("_").

Rename the signal line.

The signal line name contains
consecutive underscores.

Rename the signal line.

The signal line name has consecutive
underscores.

Rename the signal line.

10-120

MathWorks Automotive Advisory Board Checks

Condition Recommended Action

The signal line name has blank
spaces.

Rename the signal line.

The signal line name has control
characters.

Rename the signal line.

Tip
Use underscores to separate parts of a signal line name instead of spaces.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-121

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check whether block names include invalid
characters
Check whether block names include invalid characters.

Description
The names of all blocks are required.

This guideline facilitates

• Readability

• Workflow

• Code generation

This guideline does not apply to subsystem blocks.

See MAAB guideline jc_0231: Usable characters for signal line name.

Results and Recommended Actions

Condition Recommended Action

The block name contains illegal
characters.

Rename the block. Allowed
characters include a–z, A–Z, 0–9,
underscore (_), and period (.).

The block name starts with a
number.

Rename the block.

The block name has blank spaces. Rename the block.
The block name has double byte
characters.

Rename the block.

Prerequisite
A prerequisite MAAB guideline for this check is jc_0201: Usable characters
for Subsystem names.

10-122

MathWorks Automotive Advisory Board Checks

Tip
Carriage returns are allowed in block names.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-123

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check Trigger and Enable block port names
Check Trigger and Enable block port names.

Description
Block port names should match the name of the signal triggering the
subsystem.

This guideline facilitates

• Readability

See MAAB guideline jc_0281: Naming of Trigger block and Enable block.

Results and Recommended Actions

Condition Recommended Action

Trigger block does not match the
name of the signal to which it is
connected.

Match Trigger block names to the
connecting signal.

Enable block does not match the
name of the signal to which it is
connected.

Match Enable block names to the
connecting signal.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-124

http://www.mathworks.com/industries/auto/maab.html

MathWorks Automotive Advisory Board Checks

Check for Simulink diagrams that have nonstandard
appearance attributes
Check model appearance setting attributes.

Description
Model appearance settings are required to conform to the guidelines when
the model is released.

This guideline facilitates

• Readability

• Workflow

See MAAB guideline na_0004: Simulink model appearance.

Results and Recommended Actions

Condition Recommended Action

Diagrams do not have white
backgrounds.

Select Format > Screen
Color > Automatic.

Diagrams do not have zoom factor
set to 100%.

Select View > Normal (100%).

The toolbar is not visible. Select View > Toolbar.
The status bar is not visible. Select View > Status Bar.
Block backgrounds are not white. Blocks should have black

foregrounds with white backgrounds.
Click the specified block and
select Format > Foreground
Color > Black and
Format > Background
Color > White.

Wide Nonscalar Lines is cleared. Select Format > Port/Signal
Displays > Wide Nonscalar
Lines.

10-125

10 Model Advisor Checks

Condition Recommended Action

Viewer Indicators is cleared. Select Format > Port/Signal
Displays > Viewer Indicators.

Testpoint Indicators is cleared. Select Format > Port/Signal
Displays > Testpoint Indicators.

Port Data Types is selected. Clear Format > Port/Signal
Displays > Port Data Types.

Storage Class is selected. Clear Format > Port/Signal
Displays > Storage Class.

Signal Dimensions is selected. Clear Format > Port/Signal
Displays > Signal Dimensions.

Model Browser is selected. Clear View > Model Browser
Options > Model Browser.

Sorted Order is selected. Clear Format > Block
Displays > Sorted Order.

Model Block Version is selected. Clear Format > Block
Displays > Model Block Version.

Model Block I/O Mismatch is
selected.

Clear Format > Block
Displays > Model Block I/O
Mismatch.

Execution Context Indicator is
selected.

Clear Format > Block
Displays > Execution Context
Indicator.

Sample Time Colors is selected. Clear Format > Port/Signal
Displays > Sample Time Colors.

Library Link Display is set to
User or All.

Select Format > Library Link
Display > None.

Linearization Indicators is
cleared.

Select Format > Port/Signal
Displays > Linearization
Indicators.

10-126

MathWorks Automotive Advisory Board Checks

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-127

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check visibility of port block names
Check the visibility of port block names.

Description
An organization applying the MAAB guidelines must select one of the
following alternatives to enforce:

• The name of port blocks are not hidden.

• The name of port blocks must be hidden.

This guideline facilitates

• Readability

Note This check does not look in masked subsystems.

See MAAB guideline na_0005: Port block name visibility in Simulink models.

Input Parameters

All Port names should be shown (Format/Show Name)
Select this check box if all ports should show the name, including
subsystems.

Results and Recommended Actions

Condition Recommended Action

Blocks do not show their name and
the All Port names should be
shown (Format/Show Name)
check box is selected.

Change the format of the specified
blocks to show names according to
the input requirement.

10-128

MathWorks Automotive Advisory Board Checks

Condition Recommended Action

Blocks show their name and the All
Port names should be shown
(Format/Show Name) check box is
cleared.

Change the format of the specified
blocks to hide names according to
the input requirement.

Subsystem blocks do not show their
port names.

Set the subsystem parameter Show
port labels to a value other than
none.

Subsystem blocks show their port
names.

Set the subsystem parameter Show
port labels to none.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-129

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check for direction of subsystem blocks
Check the orientation of subsystem blocks.

Description
Subsystem inputs must be located on the left side of the block, and outputs
must be located on the right side of the block.

This guideline facilitates

• Readability

See MAAB guideline jc_0111: Direction of Subsystem.

Results and Recommended Actions

Condition Recommended Action

Subsystem blocks are not in the
correct orientation.

Change the subsystem blocks to have
the correct orientation, with inports
on the left and outports on the right.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-130

http://www.mathworks.com/industries/auto/maab.html

MathWorks Automotive Advisory Board Checks

Check for proper position of constants used in
Relational Operator blocks
Check the position of Constant blocks used in Relational Operator blocks.

Description
When the relational operator is used to compare a signal to a constant value,
the constant input should be the second, lower input.

This guideline facilitates

• Readability

• Code generation

See MAAB guideline jc_0131: Use of Relational Operator block.

Results and Recommended Actions

Condition Recommended Action

Relational Operator blocks have a
Constant block on the first, upper
input.

Move the Constant block to the
second, lower input.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-131

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check for entry format in state blocks
Check the format of entries in state blocks.

Description
A new line should be started after the entry, during, and exit action
statements and after the completion of an assignment statement “;”.

This guideline facilitates

• Readability

See MAAB guideline jc_0501: Format of entries in a state block.

Results and Recommended Actions

Condition Recommended Action

An entry in a state block is not
formatted correctly.

Validate that the intended design
is properly represented in the
Stateflow diagram.

An entry action statement is not by
itself.

Add a new line.

Multiple entry action statements
found on one line.

Add a new line between entry action
statements.

An during action statement is not
by itself.

Add a new line.

Multiple during action statements
found on one line.

Add a new line between during
action statements.

An exit action statement is not by
itself.

Add a new line.

Multiple exit action statements
found on one line.

Add a new line between exit action
statements.

10-132

MathWorks Automotive Advisory Board Checks

Condition Recommended Action

Multiple action statements found on
one line.

Add a new line between action
statements.

Potential misuse of semicolon (;) on
a line.

Correct the use of the semicolon
where specified.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-133

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check for use of tunable parameters in Stateflow
Check for use of tunable parameters in Stateflow charts.

Description
Include tunable parameters in a Stateflow chart as inputs from the Simulink
model.

This guideline facilitates

• Readability

• Workflow

• Code generation

See MAAB guideline jc_0541: Use of tunable parameters in Stateflow.

Results and Recommended Actions

Condition Recommended Action

Stateflow charts reference Simulink
data objects, which should be used
as inputs from the Simulink model.

Make the Simulink data objects
inputs from the Simulink model to
the specified Stateflow chart.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-134

http://www.mathworks.com/industries/auto/maab.html

MathWorks Automotive Advisory Board Checks

Check for proper use of Switch blocks
Check for proper use of Switch blocks.

Description
This check verifies that the Switch block’s control input (the second input)
is a Boolean value and that the block is configured to pass the first input
when the control input is nonzero.

This guideline facilitates

• Readability

• Workflow

See MAAB guideline jc_0141: Use of the Switch block.

Results and Recommended Actions

Condition Recommended Action

The Switch block’s control input
(second input) is not a Boolean value.

Change the data type of the control
input to Boolean.

The Switch block is not configured to
pass the first input when the control
input is nonzero.

Set the block parameter Criteria
for passing first input to u2 ~=0.

See Also

• See the description of the Switch block in the Simulink documentation.

• The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-135

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check for proper use of signal buses and Mux block
usage
Check for proper use of signal busses and Mux block usage.

Description
This check verifies whether a model is using signal buses and Mux blocks
properly.

This guideline facilitates

• Readability

• Workflow

See MAAB guideline na_0010: Grouping data flows into signals.

Results and Recommended Actions

Condition Recommended Action

The individual scalar input signals
for a Mux block do not have
common functionality, data types,
dimensions, and units.

Modify the scalar input signals such
that the specifications match.

The output of a Mux block is not a
vector.

Change the output of the Mux block
to a vector.

All inputs to a Mux block are not
scalars.

Make sure that all input signals to
Mux blocks are scalars.

The input for a Bus Selector block is
not a bus signal.

Make sure that the input for all Bus
Selector blocks is a bus signal.

See Also

• Using Composite Signals in the Simulink documentation.

10-136

MathWorks Automotive Advisory Board Checks

• The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-137

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Check for mismatches between Stateflow ports and
associated signal names
Check for mismatches between Stateflow ports and associated signal names.

Description
The name of Stateflow input and output should be the same as the
corresponding signal. This guideline is required for:

• Readability

• Workflow

See MAAB guideline db_0123: Stateflow port names.

Results and Recommended Actions

Condition Recommended Action

Signals have names that differ
from those of their corresponding
Stateflow ports.

Change the names of either the
signals or the Stateflow ports.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-138

http://www.mathworks.com/industries/auto/maab.html

MathWorks Automotive Advisory Board Checks

Check for proper scope of From and Goto blocks
Check the scope of From and Goto blocks.

Description
You can use global scope for controlling flow. However, From and Goto blocks
must use local scope for signal flows.

This guideline facilitates

• Readability

• Workflow

• Code generation

See MAAB guideline na_0011: Scope of Goto and From blocks.

Results and Recommended Actions

Condition Recommended Action

From and Goto blocks are not
configured with local scope.

• Make sure the ports are connected
correctly.

• Change the scope of the specified
blocks to local.

See Also
The MathWorks Automotive Advisory Board, which lists downloads for the
latest version of Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow

10-139

http://www.mathworks.com/industries/auto/maab.html

10 Model Advisor Checks

Requirements Consistency Checks

In this section...

“Identify requirement links with missing documents” on page 10-141
“Identify requirement links that specify invalid locations within documents”
on page 10-142
“Identify selection-based links having descriptions that do not match their
requirements document text” on page 10-143
“Identify requirement links with inconsistent path types and preferences”
on page 10-144

10-140

Requirements Consistency Checks

Identify requirement links with missing documents
Ensure that requirements link to existing documents.

Description
You used the Requirements Management Interface (RMI) to associate a
design requirements document with a part of your model design and the
interface cannot find the specified document.

Results and Recommended Actions

Condition Recommended Action

The requirements document
associated with a part of your
model design is not accessible at the
specified location.

Open the Requirements dialog box
and correct the path name of the
requirements document or move the
document to the specified location.

See Also
“Adding and Viewing Requirement Links” on page 2-4

10-141

10 Model Advisor Checks

Identify requirement links that specify invalid
locations within documents
Ensure that requirements link to valid locations (e.g., bookmarks, line
numbers, anchors) within documents.

Description
You used the Requirements Management Interface (RMI) to associate a
location in a design requirements document (a bookmark, line number, or
anchor) with a part of your model design and the interface cannot find the
specified location in the specified document.

Results and Recommended Actions

Condition Recommended Action

The location in the requirements
document associated with a part of
your model design is not accessible.

Open the Requirements dialog box
and correct the location reference
within the requirements document.

See Also
“Adding and Viewing Requirement Links” on page 2-4

10-142

Requirements Consistency Checks

Identify selection-based links having descriptions
that do not match their requirements document text
Ensure that descriptions of selection-based links use the same text found in
their requirements documents.

Description
You used selection-based linking of the Requirements Management Interface
(RMI) to label requirements in the model’s Requirements menu with text
that appears in the corresponding requirements document. This check helps
you manage traceability by identifying requirement descriptions in the menu
that are not synchronized with text in the documents.

Results and Recommended Actions

Condition Recommended Action

Selection-based links have
descriptions that differ from
their corresponding selections in the
requirements documents.

If the difference reflects a change in
the requirements document, click
the link in the Model Advisor results
to replace the current description
in the selection-based link with
the text from the requirements
document (the external description).
Alternatively, you can right click
the object in the model window,
select Edit/Add Links from the
Requirements menu, and use
the Requirements dialog box that
appears to synchronize the text.

See Also
“Selection-Based Linking” on page 2-22

10-143

10 Model Advisor Checks

Identify requirement links with inconsistent path
types and preferences
Check that requirement paths are of the type selected in the preferences.

Description
You are using the Requirements Management Interface (RMI) and the paths
specifying the location of your requirements documents differ from the file
reference type set as your preference.

Results and Recommended Actions

Condition Recommended Action

The paths indicating the location
of requirements documents use a
file reference type that differs from
the preferences specified in the
Selection-based linking dialog
box.

Change the preferred document file
reference type or the specified paths
by doing one of the following:

• Click Fix to change the current
path to the valid path.

• Update the preference in the
Selection-based linking dialog
box. In the model window, select
Tools > Requirements > Link
settings and change the value for
the Document file reference
option.

See Also
“Selection-Based Linking” on page 2-22

10-144

A

Examples

Use this list to find examples in the documentation.

A Examples

Requirements Management Interface
“Adding Requirement Links to an Object” on page 2-7
“Viewing Requirements Documents” on page 2-14
“Making Selection-Based Links” on page 2-23
“Creating a Custom Link Requirement Type” on page 2-32
“Viewing Objects with Requirement Links” on page 2-45
“Generating a Requirements Report” on page 2-48
“Displaying the System Requirements in a Diagram” on page 2-50
“Including Requirements with Generated Code” on page 2-56

Requirements Management Interface (DOORS Version)
“Linking Objects to DOORS Requirements” on page 3-9
“Synchronizing a Model with the DOORS Software” on page 3-16
“Navigating from a Simulink Model to DOORS Requirements” on page 3-28
“Navigating from a DOORS Requirements to the Simulink Model” on page
3-30

Verification Manager
“Opening the Verification Manager” on page 4-7
“Enabling and Disabling Model Verification Blocks with the Verification
Manager” on page 4-15
“Using Enabling and Disabling Tools in the Verification Manager” on page
4-20
“Managing Verification Requirements” on page 4-24

Model Coverage
“Details Report Section” on page 5-28
“Decisions Analyzed Table” on page 5-30
“Conditions Analyzed Table” on page 5-31

A-2

Model Coverage

“MC/DC Analysis Table” on page 5-31
“N-Dimensional Lookup Table Report” on page 5-36
“Signal Range Analysis Report” on page 5-43
“Displaying Model Coverage with Model Coloring” on page 5-48
“Creating a Model with Embedded MATLAB Function Block Decisions”
on page 5-65
“Understanding Embedded MATLAB Function Block Model Coverage”
on page 5-69

A-3

A Examples

A-4

Index

IndexA
adding links to requirements 2-7
adding requirements 2-4
Assertion block appearance 4-19

C
categorical lists of functions 7-1
changing links to requirements 2-12
closing Signal Builder Requirements pane 4-13
colored diagram model coverage display 5-47

enabling 5-47
condition coverage

Embedded MATLAB Function blocks 5-79
statements in Embedded MATLAB Function

block 5-65
configuring MATLAB

for DOORS version 3-6
customizing Model Advisor 6-1
cv.cvdatagroup function

reference 7-3 8-5
cv.cvtestgroup function

reference 7-3 8-7
cvexit function

reference 7-3 8-9
cvhtml function

model coverage 5-55
reference 7-3 8-10

cvload function
model coverage 5-56
reference 7-3 8-12

cvsave function
model coverage 5-56
reference 7-3 8-14

cvsim function
model coverage 5-54
reference 7-3 8-15

cvsimref function
reference 7-3 8-17

cvtest function
model coverage 5-52
reference 7-3 8-19

D
decision coverage

Embedded MATLAB Function blocks 5-78
statements in Embedded MATLAB Function

blocks 5-64
defining Model Advisor checks 6-17
defining Model Advisor tasks 6-41
demos

Model Advisor customization demo 6-6
simcovdemo model coverage demo 5-7

disabling Model Verification blocks across test
groups 4-20

DOORS
additional installation for 3-3
starting 3-6

DOORS Requirements Management Interface
block type descriptions 3-18
definition for object 3-15
from Simulink to DOORS 3-28
hierarchical numbers 3-18
naming of surrogate exported module 3-18
object identifiers 3-18
opening the object in Simulink, Stateflow, or

MATLAB 3-32
overview 3-2
saving formal modules 3-21
starting MATLAB for 3-6
synchronizing models with DOORS 3-16
synchronizing objects with DOORS formal

module 3-16
viewing model elements with

requirements 3-26
viewing requirements 3-26

Index-1

Index

E
Embedded MATLAB Function blocks

condition coverage 5-79
condition coverage statements 5-65
decision coverage 5-78
decision coverage statements 5-64
MCDC coverage 5-79
MCDC coverage statements 5-65
model coverage 5-64
model coverage example 5-65
types of model coverage 5-64

enabling Model Verification blocks across test
groups 4-20

F
functions

categories 7-1
cv.cvdatagroup 7-3 8-5
cv.cvtestgroup 7-3 8-7
cvexit 7-3 8-9
cvhtml 7-3 8-10
cvload 7-3 8-12
cvsave 7-3 8-14
cvsim 7-3 8-15
cvsimref 7-3 8-17
cvtest 7-3 8-19
Model Advisor customization API 7-4
Model Advisor formatting API 7-5
model coverage 7-3
rminav 7-2 8-81
start old Requirements Management

Interface 7-2

I
icons for Model Verification blocks in Verification

Manager 4-16
IEC 61508

Model Advisor checks 10-57

installing DOORS 3-3

L
linking model objects to requirements 2-7
Lookup Table block in model coverage report 5-36
Lookup Table model coverage

n-dimensional 5-42
three-dimensional example 5-39
two-dimensional example 5-36

M
MathWorks Automotive Advisory Board

Model Advisor checks 10-73
MCDC coverage

Embedded MATLAB Function blocks 5-79
statements in Embedded MATLAB Function

blocks 5-65
MCDC table

condition cases 5-32
Model Advisor checks

IEC 61508 10-57
MathWorks Automotive Advisory

Board 10-73
requirements consistency 10-140

Model Advisor customization API functions 7-4
Model Advisor customizations

creating check callback functions 6-10
defining custom checks 6-17
defining custom tasks 6-41
defining process callback functions 6-45
formatting Model Advisor outputs 6-48
registering custom checks and tasks 6-7
slvnvdemo_mdladv demo 6-6
workflow overview 6-3

Model Advisor formatting API functions 7-5

Index-2

Index

model coverage
colored Simulink diagram display 5-47
colored Simulink diagram example 5-48
commands in MATLAB 5-52
Conditions analyzed table 5-31
Decisions analyzed table 5-30
Details report section 5-28
Embedded MATLAB Function blocks 5-64
enabling colored diagram display 5-47
enabling colored Simulink diagram

display 5-47
HTML settings 5-19
introduction 5-2
Lookup Table block report 5-36
MCDC table 5-32
n-dimensional Lookup Table 5-42
settings in dialog 5-11
signal range analysis report 5-43
Summary report section 5-27
three-dimensional Lookup Table

example 5-39
two-dimensional Lookup Table 5-36
understanding report 5-25
workflow 5-7

model coverage demo
simcovdemo 5-7

model coverage functions 7-3
cvhtml 5-55
cvload 5-56
cvsave 5-56
cvsim 5-54
cvtest 5-52

Model Verification blocks
block appearance 4-17
disabling for test groups 4-15
enabling for test groups 4-15
icons 4-16
parameter settings 4-3
using individually 4-2

models
running test cases 5-7

modifying requirements 2-4

O
objects

linking model objects to requirements 2-7
viewing objects with requirements 2-45

old Requirements Management Interface 7-2
opening a Signal Builder block 4-9
operating system requirements 1-3

P
parameters for Model Verification blocks 4-3

R
report

model coverage HTML options 5-19
understanding model coverage report 5-25

requirements
adding 2-4
adding to test groups 4-25
for Model Verification block settings 4-24
for Requirements Management Interface for

DOORS 3-2
in generated code 2-56
linking to model objects 2-7
modifying 2-4
viewing 2-4
viewing for test groups 4-27
viewing objects with 2-45

requirements consistency
Model Advisor checks 10-140

requirements documents
editing 2-14
viewing 2-14

requirements links
editing 2-12

Index-3

Index

Requirements Management Interface
overview 2-2

Requirements Management Interface for DOORS
block type descriptions 3-18
definition of object in DOORS 3-15
from Simulink to DOORS 3-28
hierarchical numbers 3-18
naming of surrogate exported modules 3-18
object identifiers 3-18
opening the object in Simulink or

Stateflow 3-32
overview 3-2
saving formal modules 3-21
starting 3-6
starting MATLAB for 3-6
synchronizing models with DOORS 3-16
synchronizing objects with DOORS formal

module 3-16
viewing model elements with

requirements 3-26
viewing requirements 3-26

Requirements pane for Verification
Manager 4-24

rminav function
reference 7-2 8-81

S
Signal Builder block

opening 4-9
Signal Builder dialog box

closing Verification Manager Requirements
pane 4-13

signal range analysis report in model
coverage 5-43

simcovdemo
model coverage demo 5-7

slvnvdemo_mdladv
Model Advisor customization demo 6-6

starting DOORS 3-6
starting MATLAB for DOORS 3-6
starting Requirements Management Interface

for DOORS 3-6
Summary section of model coverage report 5-27
synchronizing models with DOORS 3-16
system requirements 1-3

MATLAB 1-3
Microsoft Excel 1-3
Microsoft Word 1-3
operating system 1-3
Simulink 1-3
Stateflow 1-3
Telelogic DOORS 1-3

T
test case commands 5-7
test groups

adding requirements 4-25
disabling Model Verification blocks 4-15
enabling Model Verification blocks 4-15
Model Verification blocks enabled across 4-20

V
verification blocks

example of use 4-2
icons 4-16
requirements for test groups 4-24
stopping simulation 4-4

Index-4

Index

Verification Manager
closing Requirements pane 4-13
disabling Model Verification blocks for test

groups 4-15
enabled/disabled block appearance 4-17
enabling Model Verification blocks for test

groups 4-15
flat display 4-15
hierarchical display 4-15
icons for Model Verification blocks 4-16
opening 4-7
Requirements pane 4-24

viewing objects with requirements 2-45
viewing requirements 2-4

Index-5

	toc
	Getting Started
	Product Overview
	System Requirements
	Operating System Requirements
	Product Requirements

	Organization of This User’s Guide

	Managing Model Requirements
	What Is the Requirements Management Interface?
	Configuring the Requirements Management Interface
	Adding and Viewing Requirement Links
	Object and Document Types
	Location Types

	Adding Requirement Links to an Object
	Viewing Requirements Documents
	Resolving the Document Path
	Relative Path Specified Example
	No Path Specified Example
	Absolute Path Specified Example

	Adding Requirement Links to Multiple Objects Simultaneously
	Deleting All Requirement Links for Multiple Objects Simultaneous

	Selection-Based Linking
	Configuring Selection-Based Linking
	Making Selection-Based Links

	Linking to Custom Types of Requirements Documents
	Why Create a Custom Link Type?
	Custom Link Type Registration
	Built-In Link Types
	Link Properties
	Link Type Properties
	Creating a Custom Link Requirement Type
	Creating a Document Index

	Navigating to Simulink Models from External Documents
	Providing Unique Object Identifiers
	Using the rmiobjnavigate Utility
	Determining the Navigation Command
	Using the ActiveX Navigation Control
	Typical Code Sequence for Establishing Two-Way Links

	Viewing Objects with Requirement Links
	Generating a Requirements Report
	Displaying the System Requirements in a Diagram
	About the System Requirements Block
	Adding the System Requirements Block
	Renaming the System Requirements Block
	Changing Fonts for the System Requirements Block

	Including Requirements with Generated Code

	Managing Model Requirements with DOORS Software
	What Is the Requirements Management Interface for DOORS Software
	Configuring the Requirements Management Interface for DOORS Soft
	Before You Begin
	Installing DOORS Software Before RMI
	Installing DOORS Software After RMI
	Upgrading DOORS Software
	Manual Installation for DOORS Software

	Starting the Requirements Management Interface for DOORS Softwar
	Linking Objects to DOORS Requirements
	About Linkages Between a Simulink Model and DOORS Software
	Creating a DOORS Requirement Object
	Linking a Simulink or Stateflow Object to a DOORS Requirement

	Synchronizing a DOORS Module with the Simulink Model
	About Module Synchronization
	Synchronizing a Model with the DOORS Software
	Customizing the Level of Synchronization Detail
	Customizing the DOORS Synchronization Settings
	Linking Requirements to the DOORS Synchronized Module

	Navigating Between Model Objects and DOORS Requirements
	Viewing Model Elements with Requirements
	Navigating from a Simulink Model to DOORS Requirements
	Navigating Through the Synchronized Module

	Navigating from a DOORS Requirements to the Simulink Model
	Navigating Through the Synchronized Module

	Managing Model Verification Blocks
	Using Model Verification Blocks
	Using the Verification Manager
	What Is the Verification Manager?
	Opening the Verification Manager
	Enabling and Disabling Model Verification Blocks with the Verifi
	Using Enabling and Disabling Tools in the Verification Manager

	Managing Verification Requirements

	Using Model Coverage
	Introduction to Model Coverage
	What Is Model Coverage?
	How Model Coverage Works
	Types of Model Coverage
	Cyclomatic Complexity
	Decision Coverage (DC)
	Condition Coverage (CC)
	Modified Condition/Decision Coverage (MC/DC)
	Lookup Table Coverage (LUT)

	Blocks That Receive Model Coverage

	Using Model Coverage
	Basic Workflow for Using Model Coverage
	Creating and Running Test Cases

	Specifying Model Coverage Reporting Options
	Coverage Settings Dialog Box
	Coverage Tab
	Coverage for this model
	Select Subsystem
	Coverage for referenced models
	Select Models
	Coverage metrics

	Results Tab
	Save Cumulative Results in Workspace Variable
	Save Last Run in Workspace Variable
	Increment Variable Name with Each Simulation
	Update Results on Pause
	Display Coverage Results Using Model Coloring

	Report Tab
	Generate HTML Report
	Settings
	Cumulative Runs
	Last Run
	Additional Data to Include in Report

	Options Tab
	Treat Simulink Logic Blocks as Short-Circuited
	Warn When Unsupported Blocks Exist in a Model

	Understanding Model Coverage Reports
	About Model Coverage Reports
	Summary Report Section
	Details Report Section
	Decisions Analyzed Table
	Conditions Analyzed Table
	MC/DC Analysis Table
	Cumulative Coverage Reports

	N-Dimensional Lookup Table Report
	Signal Range Analysis Report
	Colored Simulink Diagram Coverage Display
	How Model Coverage Highlighting Works
	Enabling the Colored Diagram Display
	Displaying Model Coverage with Model Coloring
	Accessing Coverage Information for Colored Blocks

	Using Model Coverage Commands
	About Model Coverage Commands
	Creating Tests with cvtest
	Running Tests with cvsim
	Producing HTML Reports with cvhtml
	Saving Test Runs to a File with cvsave
	Loading Stored Coverage Test Results with cvload
	cvload Special Considerations

	Coverage Script Example

	Using Model Coverage Commands for Referenced Models
	Introduction
	Creating a Test Group with cv.cvtestgroup
	Running Tests with cvsimref
	Extracting Results from cv.cvdatagroup

	Model Coverage for Embedded MATLAB Function Blocks
	Types of Model Coverage in Embedded MATLAB Function Blocks
	Creating a Model with Embedded MATLAB Function Block Decisions
	Understanding Embedded MATLAB Function Block Model Coverage
	Model Coverage for the Embedded MATLAB Function Block Function r
	Model Coverage for the Embedded MATLAB Function Block and the Mo

	Customizing the Model Advisor
	Customization Process and Guidelines
	Demo and Code Example
	Registering Custom Checks, Tasks, and Groups
	About Registering Custom Checks, Tasks, and Groups
	Methods for Registering Custom Checks and Groups
	Code Example: Methods for Registering Custom Checks and Tasks

	Creating Callback Functions for Checks
	About Check Callback Functions
	Simple Check Callback Function
	Detailed Check Callback Function
	Check Callback Function with Hyperlinked Results

	Defining Custom Checks
	About Custom Checks
	Properties of Custom Checks
	How Visible, Enable, and Value Properties Interact

	Defining Where Custom Checks Appear
	Code Example: Check Definition Function

	Defining Check Input Parameters
	About Input Parameters
	Properties of Input Parameters
	Specifying Input Parameter Layout
	Code Example: Input Parameter Definition

	Defining Check List Views
	About List Views
	Properties of List Views
	Code Example: List View Definition

	Defining Check Actions
	About Actions
	Properties of Actions
	Action Callback Function
	Code Example: Action Definition
	Code Example: Action Callback Function

	Defining Custom Tasks
	About Custom Tasks
	Properties of Custom Tasks
	How Visible, Enable, and Value Properties Interact for Tasks

	Defining Where Tasks Appear
	Code Example: Task Definition Function

	Defining Custom Groups
	About Custom Groups
	Defining Where Custom Groups Appear
	Properties of Model Advisor Groups
	Code Example: Group Definition

	Defining a Process Callback Function
	About Process Callback Functions
	Process Callback Function Arguments
	Code Example: Process Callback Function

	Formatting Model Advisor Outputs
	What Is the Model Advisor Formatting API?
	Formatting Text
	Formatting Lists
	Formatting Tables
	Formatting Paragraphs
	Code Example: Model Advisor Formatted Output

	Function Reference
	Requirements Management Interface
	Model Coverage
	Model Advisor Customization API
	Model Advisor Formatting API

	Functions — Alphabetical List
	Block Reference
	Model Advisor Checks
	Simulink Verification and Validation Checks
	DO-178B Checks
	Check safety-related optimization settings
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for solvers
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for sample time
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for signal data
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for parameters
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for data used for debug
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for data store memory
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for type conversions
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for signal connectivity
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for bus connectivity
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings that apply to function-
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for compatibility
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for model referencing
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related model referencing settings
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related code generation settings
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for saving
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check for proper usage of For Iterator blocks
	Description
	Results and Recommended Actions
	See Also

	Check for proper usage of While Iterator blocks
	Description
	Results and Recommended Actions
	See Also

	Display model version information
	Description
	Results and Recommended Actions
	See Also

	Check for proper usage of blocks that compute absolute values
	Description
	Results and Recommended Actions
	See Also

	Check for proper usage of Relational Operator blocks
	Description
	Results and Recommended Actions
	See Also

	IEC 61508 Checks
	Display model metrics and complexity
	Description
	Results and Recommended Actions
	See Also

	Check for unconnected objects
	Description
	Results and Recommended Actions
	See Also

	Check for fully defined interface
	Description
	Results and Recommended Actions
	Tip
	See Also

	Check for questionable blocks
	Description
	Results and Recommended Actions
	Limitation
	See Also

	Check usage of Stateflow
	Description
	Results and Recommended Actions
	See Also

	Display configuration management data
	Description
	Results and Recommended Actions
	See Also

	Check usage of Simulink
	Description
	Results and Recommended Actions
	See Also

	MathWorks Automotive Advisory Board Checks
	Check for difference in font and font sizes
	Description
	Input Parameters
	Results and Recommended Actions
	Action Results
	See Also

	Check transition orientations in flow charts
	Description
	Results and Recommended Actions
	See Also

	Check for display of nondefault block attributes
	Description
	Results and Recommended Actions
	See Also

	Check for proper labeling on signal lines
	Description
	Results and Recommended Actions
	See Also

	Check for propagated labels on signal lines
	Description
	Results and Recommended Actions
	See Also

	Check default transition placement in Stateflow charts
	Description
	Results and Recommended Actions
	See Also

	Check setting Stateflow graphical function return value
	Description
	Results and Recommended Actions
	See Also

	Check for blocks not using one-based indexing
	Description
	Results and Recommended Actions
	See Also

	Check for invalid file names
	Description
	Results and Recommended Actions
	See Also

	Check for invalid model directory names
	Description
	Results and Recommended Actions
	See Also

	Check for blocks that are not discrete
	Description
	Results and Recommended Actions
	See Also

	Check for prohibited sink blocks
	Description
	Results and Recommended Actions
	See Also

	Check for invalid port positioning and configuration
	Description
	Results and Recommended Actions
	See Also

	Check for mismatches between names of ports and corresponding si
	Description
	Results and Recommended Actions
	Limitations
	See Also

	Check whether block names do not appear below blocks
	Description
	Results and Recommended Actions
	See Also

	Check for systems that mix primitive blocks and subsystems
	Description
	Results and Recommended Actions
	See Also

	Check whether model has unconnected block input ports, output po
	Description
	Results and Recommended Actions
	See Also

	Check for improperly positioned Trigger and Enable blocks
	Description
	Results and Recommended Actions
	See Also

	Check whether annotations have drop shadows
	Description
	Results and Recommended Actions
	See Also

	Check whether tunable parameters specify expressions, data type
	Description
	Results and Recommended Actions
	See Also

	Check whether Stateflow events are defined at the chart level or
	Description
	Results and Recommended Actions
	See Also

	Check whether Stateflow data objects with local scope are define
	Description
	Results and Recommended Actions
	See Also

	Check interface signals and parameters
	Description
	Results and Recommended Actions
	See Also

	Check for exclusive states, default states, and substate validit
	Description
	Prerequisite
	Results and Recommended Actions
	See Also

	Check optimization parameters for Boolean data types
	Description
	Results and Recommended Actions
	Prerequisite
	See Also

	Check model diagnostic settings
	Description
	Results and Recommended Actions
	Tip
	See Also

	Check the display attributes of block names
	Description
	Results and Recommended Actions
	See Also

	Check icon display attributes for port blocks
	Description
	Results and Recommended Actions
	See Also

	Check whether subsystem block names include invalid characters
	Description
	Results and Recommended Actions
	See Also
	Tip

	Check whether Inport and Outport block names include invalid cha
	Description
	Results and Recommended Actions
	Tips
	See Also

	Check whether signal line names include invalid characters
	Description
	Results and Recommended Actions
	Tip
	See Also

	Check whether block names include invalid characters
	Description
	Results and Recommended Actions
	Prerequisite
	Tip
	See Also

	Check Trigger and Enable block port names
	Description
	Results and Recommended Actions
	See Also

	Check for Simulink diagrams that have nonstandard appearance att
	Description
	Results and Recommended Actions
	See Also

	Check visibility of port block names
	Description
	Input Parameters
	Results and Recommended Actions
	See Also

	Check for direction of subsystem blocks
	Description
	Results and Recommended Actions
	See Also

	Check for proper position of constants used in Relational Operat
	Description
	Results and Recommended Actions
	See Also

	Check for entry format in state blocks
	Description
	Results and Recommended Actions
	See Also

	Check for use of tunable parameters in Stateflow
	Description
	Results and Recommended Actions
	See Also

	Check for proper use of Switch blocks
	Description
	Results and Recommended Actions
	See Also

	Check for proper use of signal buses and Mux block usage
	Description
	Results and Recommended Actions
	See Also

	Check for mismatches between Stateflow ports and associated sign
	Description
	Results and Recommended Actions
	See Also

	Check for proper scope of From and Goto blocks
	Description
	Results and Recommended Actions
	See Also

	Requirements Consistency Checks
	Identify requirement links with missing documents
	Description
	Results and Recommended Actions
	See Also

	Identify requirement links that specify invalid locations within
	Description
	Results and Recommended Actions
	See Also

	Identify selection-based links having descriptions that do not m
	Description
	Results and Recommended Actions
	See Also

	Identify requirement links with inconsistent path types and pref
	Description
	Results and Recommended Actions
	See Also

	Examples
	Requirements Management Interface
	Requirements Management Interface (DOORS Version)
	Verification Manager
	Model Coverage

	Index

	tables
	Types of Input Parameters

